

Ball Screw Support Bearings

60° Angular Contact Bearings
Precision Bearing Units · Precision Locknuts
TI-I-5010.2 / E

Headquarter of the IBC Wälzlager GmbH at the industrial area of Solms-Oberbiel

Location with Tradition

The headquarters in Solms-Oberbiel is centrally located in Germany close to the North/South and East/West highways which also provides fo a central location in Europe. The international Airport Frankfurt approx. 80 km away serves as a worldwide link.

iec

Flexible and Reliable

In the middle of 1996 we opened the central computer controlled high shelf warehouse with more than 2.000 pallet places. It is used for finsihed and semi-finished products as well as for large bearings. This is in addition to our existing two-storage computer controlled service warehouse also with more than 2.500 storage places. Both warehouse systems provide together with our distribution centre and communication network precise logistics and a worldwide unequaled reliability.

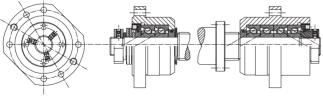
Precise Logistics provide an unequaled worldwide reliability

Central Computer Controlled High Shelf Warehouse – Middle 1996

Precision with Future

We are future orientated. We have the creativity and vision to perform and provide.

This is our exact presentation to solutions with precision.



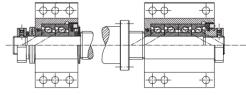


Table of Contents

_		
1. 2. 2.1 2.2	Range of IBC Precision Products for Support of Ball Screws Definition of Bearing Size Capacity and Life Time Selection of Preload, Axial Stiffness	Page 4 4 4 6
3.4	Super Precision 60° - Angular Contact Thrust Ball Bearings Designation Dimensional Tables Tolerances of Bearings Recommended Fits Tolerances of Adjacent Parts	7 8 10 10
BSBU.		
4.3 4.4 4.5 4.6	High Precision Flange Units High Precision Pillow Block Units BSBU, BSBU-M BSPB, BSPB-M BSPB, BSPB-M BNBU BNBU BNBU BNPB BNPB BNPB BNPB BNPB	12 15 16 18 20 21 22 23 24 25
MBA	MBAS MMRB MMRS MMRS MMR MMR-Q S MD	
5.3	Precision Accessories Precision Labyrinth Locknuts Labyrinth-Seals and Seal-Nuts Precision Locknuts MMRS S, MD MBA, MBAS, MMA, MMR, MMRB, MMRBS Pretension of Spindles with Precision Locknuts	27 28 29 30 32
6		_

- Drawings for Inquiries for Fixed End and Floating End Units
- 6. 7. 8. Alpha-Numerical Product Directory Glossary (Materials)
- Material Grease 8.1
- 8.2

1. Overview

Range of IBC Precision Products for Support of Ball Screws

Fields of application of 60° super precision angular contact ball bearings and units:

Rigid but fairly low-friction assembly of ball screws or satellite screws for conversion of rotary movement into linear movement (among others, also in worm gears for rotating tables or in tailstocks).

In particular 60° precision angular contact ball bearings are used for machine tools or machines and devices with similar high requirements regarding precision, speed but also rigidity and a lower friction behaviour and thus a less heating up of the bearings or components.

Advantages

Of course easy assembly, a long life time, the option of lifetime lubrication or circulating oil lubrication, as sometimes employed for driven ball screw nuts are other features which should be adjusted to match each other optimally. Next to the open 60° bearings, several sizes are manufactured with a non-contact rubber seal at both ends.

High axial loads

Whereas contact ball bearings with small contact angles of 15°, 25° mainly absorb radial loads and only qualified axial loads, the ratio is different in case of 60° super precision angular contact thrust ball bearings because the axial load is to be predominated here.

Different preloads

Depending on the required rotational speeds and rigidity, it is possible to choose between light, medium and heavy preload.

Rotational speeds

If required, the steel balls are replaced by ceramic balls to achieve a 35 % increase in rotational speed.

Precision bearing units

For 20 years IBC Wälzlager GmbH has been mounting open bearings into housings with labyrinth seals. Two series for driven spindles and driven nuts have turned out to be the most effective:

- a) Cartridge Units with Flanged Housing
- b) Pillow Block Units

The cartridge units with integrated labyrinth seal and lifetime lubrication have been revised and designed to allow for easier mounting. The seat diameter was enlarged to be able to slide a pre-assembled module (ball screw with it's nut + bearing unit, if applicable) through the attachment bore of the unit. This proved to be helpful for maintenance.

Standard models and options

The units are available as standard, duplex and quadruplex units with lifetime lubrication. The DB duplex units, which are flattened on both sides can also be provided as DT tandem unit for applications with longer spindles and a second bearing side (see page 33). The matching disc springs and spacers for preloading or a slight stretching of the spindle are part of the delivery.

Quadruplex units are mainly mounted in QBC tandem-O-tandem arrangements but can also be delivered in a QBT arrangement, i.e. 3:1 stacking of the bearings (of interest for vertical axes with a preferred direction of load). If required by the customer, additional attachment bores, e.g. for bellows of the ball screw or additional centring locations for direct flange mounted servo motor mounts can be integrated.

Securable precision locknuts and labyrinth seals for preloading of the bearings (units) complete the product range.

2. Designation of Bearing Size - Lifetime calculation

2.1 Load carrying capacity and lifetime

For calculation of lifetime according to DIN ISO 281, the shares of radial and axial load are summarized using the following equations for dynamic-equivalent (axial) load $P_{(a)}$ and static-equivalent (axial) load $P_{(ao)}$

$$P_a = X \cdot Fr + Y \cdot Fa$$
 [2.2]
 $P_{ao} = X_o \cdot Fr + Y_o \cdot Fa$ [2.3]
For individual bearings and tandem arrangement, OO or multiple arrangements or double row bearings OO or OO

ments	in one	directi	on.			double row bearings QØ or ØQ							
Fa Fr ≦	2,17	$\frac{Fa}{Fr} >$	2,17			Fa Fr [≦]	<u>Fa</u> ≦2,17		$\frac{Fa}{Fr} \le 2,17 \frac{Fa}{Fr} > 2,1$		>2,17		
Χ	Υ	Х	Υ	X _o	Yo	Х	Υ	Х	Υ	X _o	Yo		
not appropr.		0.92	1	4	1	1.9	0.55	0.92	1	1	0.58		

Table 2.1: Radial and axial load factors X, Y, Xo, Yo

Bearing combinations

The dynamic axial load rating of several similar single-row 60° super precision angular contact thrust ball bearings with load in the same direction is calculated as follows:

$C_{aSet} = i^{0,7} \cdot C_{aSingle bearing}$	[2.4]
$C_{aoSet} = i \cdot C_{aoSingle bearing}$	[2.5]

Static safety factor: $S_{ao} = C_{ao}/P_{ao}$ (chose $S_{ao} > 2.5$) [2.6] P_a [N] Dynamic equivalent axial load (60° bearings)

Pa [N] Dynamic equivalent axial load (60° bearing P_{(r)o} [N] Static equivalent radial load (60° bearings) F_r [N] Radial component of load Fa [N] Axial component of load Radial factor of bearings, Table 2.1 Axial factor of bearings, Table 2.1

In case of bearing sets with a bearing number i which is larger than two and a rigid preload Fv, the life time per single bearing should be calculated as follows:

Life Time Calculation

Direction	Mounti	ng	Direction	Unloading		Load d	listribution relative to sing	gle bearing (F	aE)			
of load	arrangen	nent	of load	starting at	Until un	Until unloading for Fae $< X \cdot Fv$						
				Fae > X · Fv		Fae > X · Fv						
	Α	В		Х	Α	A B				В		
Fae>	<	>		2.83	Fv + 0.67 Fae [2	2.8]	Fv – 0.33 Fae	[2.9]	Fae	0		
Fae>	<<	>		5.66	0.84 Fv + 0.47 Fae [2.1	10]	1.36 Fv – 0.24 Fae	[2.11]	0.617 Fae	0		
	<<	>	< Fae	2.83	0.84 Fv - 0.30 Fae [2.1	12]	1.36 Fv + 0.52 Fae	[2.13]	0	Fae		
Fae>	<<<	>		8.49	0.73 Fv + 0.38 Fae [2.1	14]	1.57 Fv – 0.18 Fae	[2.15]	0.463 Fae	0		
	<<<	>	< Fae	2.83	0.73 Fv - 0.26 Fae [2.1	16]	1.57 Fv + 0.45 Fae	[2.17]	0	Fae		
Fae>	<<<<	>		11.30	0.65 Fv + 0.32 Fae [2.1	18]	1.71 Fv – 0.15 Fae	[2.19]	0.379 Fae	0		
	<<<<	>	< Fae	2.83	0.65 Fv – 0.23 Fae [2.2	20]	1.71 Fv + 0.45 Fae	[2.21]	0	Fae		
Fae>	<<	>>		5.66	0.84 Fv + 0.40 Fae [2.2	22]	0.84 Fv – 0.22 Fae	[2.23]	0.617 Fae	0		
Fae>	<<<	>>		8.49	1.12 Fv + 0.33 Fae [2.2	24]	1.49 Fv – 0.18 Fae	[2.25]	0.463 Fae	0		
	<<<	>>	< Fae	5.66	1.12 Fv - 0.20 Fae [2.2	26]	1.49 Fv + 0.35 Fae	[2.27]	0	0.617 Fae		
Fae>	<<<<	>>		11.30	1.03 Fv + 0.29 Fae [2.2	28]	1.68 Fv - 0.15 Fae	[2.29]	0.379 Fae	0		
	<<<<	>>	< Fae	5.66	1.03 Fv - 0.18 Fae [2.3	30]	1.68 Fv + 0.33 Fae	[2.31]	0	0.617 Fae		

Table 2.2: Resulting axial load F_{aE} of the single bearing for different mounting arrangements as function of the applied preload F_{v} and the outer

a) Radial load is distributed among all bearings in the set. (Belt forces are mostly negligible).

	iges Number of bearings per set							
$_{F}$ $_{F}$	i	2	3	4	5	6		
$r_{E} = \frac{1}{10,7}$	j ^{0,7}	1.62	2.12	2.64	3.09	3.51		
'ges	1/i ^{0.7}	0.617	0.463	0.379	0.324	0.285		

b) The axial load in respect of a single bearing is obtained using the equations 2.8 to 2.31 according to table 2.2. Only the number of bearings in load direction can bear a specific share - in load counter-direction a different or no-share will be borne, having overcome preload X · Fv.

The equivalent load $P_{(a)}$ is determined according to the equation [2.2] using F_{rE} and F_{aE}

Regarding the axial bearing load, the outer load FaF has to be taken into account in addition to the bearing preload Fv. As forces Fv and Fae are already provided for each single bearing in Table 2.2 and according to equation [2.8 through 2.31] the nominal life time is calculated using the basic load rating of the single bearing. In case of spindles, where different work may be performed in +/- axis direction it may be necessary to verify lifetime for both directions.

For spring preloaded bearings the following applies to the bearing (set) exposed to the larger load.

$$F_{a} = F_{Spring} + F_{ae}$$
 [2.32]
$$F_{a Single bearing} = \frac{1}{i^{0.7}} \cdot (F_{Spring} + F_{ae})$$
 [2.33]

A load range consisting of different forces, rotational speeds and corresponding percentage of time results in a medium equivalent load Pma:

$$P_{ma} = \begin{array}{c} \sqrt[3]{P_1^3 \cdot t_1 \cdot n_1 + ... + P_n^3 \cdot t_n \cdot n_n} \\ \sqrt[3]{n_m \cdot 100} & [2.34] \\ n_m = \begin{array}{c} \frac{t_1 \cdot n_1 + ... + t_n \cdot n_n t_1}{100} \text{ bis } t_n \text{ in } [\%] \\ P_1 ... P_n & \text{equivalent load per load case} \\ t_1 ... t_n & [\%] & \text{time component} \end{array}$$

medium rotational speed

rotational speed

[min⁻¹]

[min⁻¹]

n₁ .. n_n

Nominal life time L₁₀

 $L_{na} = a_1 \cdot a_2 \cdot a_3 \cdot L_{10}$

a2 factor.

life adjustment factor for reliability

For 90 % of the same type of bearings no fatigue of material is appearing at that time.

$$\begin{array}{lll} L_{10} = & \left(\!\!\! \begin{array}{c} C_a \\ \!\!\! P_{ma} \!\!\!\! \end{array} \!\!\! \right)^{\!\!\!P} \cdot \frac{1,000,000}{60 \cdot n} \quad [h] \\ \\ n & [min^{-1}] \\ C_a & [N] & \text{dynamic load rating, axial, single bearing} \\ P_{ma} & [N] & \text{dynamic equivalent load, axial} \\ p & & \text{life time exponential for ball bearings} \\ p = 3; \text{ for roller bearings } p = 10/3 \end{array}$$

Modified lifetime L_{na} Special safety demands, alternative materials and operating conditions are taken into account in this context.

[h]

a_2 life adjustment factor for bearing material $a_2 = a_{21} \cdot a_{2w}$ a_3 life adjustment factor for application conditions										
Reliability %	L _{na}	a ₁	Raceway material	a ₂₁	Rolling element material	a _{2w}				
90	L _{10a}	1	uncoated	1	100Cr6	1				
95	L _{5a}	0,62	IR & AR ATC	1,5	Si ₃ N ₄	2				
96	L _{4a}	0,53			balls					
97	L _{3a}	0,44								
98	L _{2a}	0,33								

0,21 a₂ life adjustment factor for special bearing material When employing high-quality bearing steel such as 100Cr6 (1.3505) the a₂ life adjustment factor 1 for bearing material is commonly used. Surface coatings and using ceramic rolling elements (silicon nitride) are increasing the

a₃ life adjustment factor for application conditions Operating conditions such as adequateness of lubrication at operating speed and temperature, absolute cleanliness at the lubricating location or existing particles are influencing lifetime.

[2.38]

Life Time Calculation

The GH62 special grease with a basic oil viscosity of 150 mm²/s at 40 °C and 18 mm²/s at 100 °C has a good load behaviour and will always allow for an a_3 value >1 in case of clean conditions (see general catalogue). Having calculated the life of single bearings, that of sets, modules or units is calculated now.

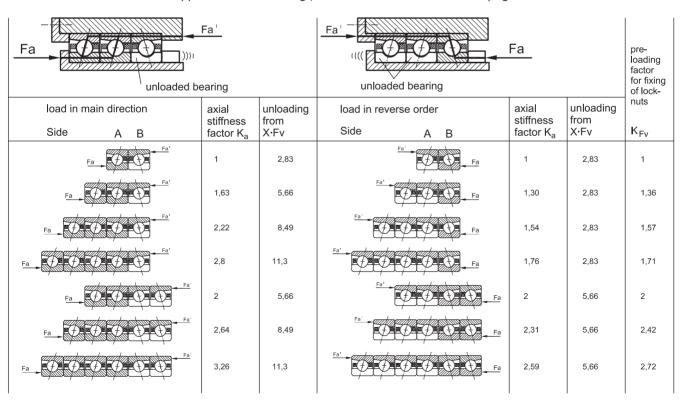
Life time of modules:

$$L_{10 \text{ unit}} = \frac{1}{\left(\frac{i_{(A)}}{L_{10(A)}^{1.11}} + \frac{i_{(B)}}{L_{10(B)}^{1.11}}\right)^{0.9}} [h]$$
 [2.39]

 $i_{(A)}$: number of bearings in the same direction, mounting arrangement A $i_{(B)}$: number of bearings in opposite direction, mounting arrangement B $L_{10(A)}$: lifetime of bearings A

 $L_{10(B)}$: lifetime of bearings B

Note:


The general reduction of the dynamic set load rating on page 22 according to [2.4] for the bearing units consisting of four bearings – two per direction – in accordance with DIN ISO 281 to the value $i^{0.7}$ x C_a , that is to $2^{0.7}$ = 1.62 C_a in this case, is linked with the following assumption: bearings with normal tolerances have slightly deviating bore and outer diameters within a set and thus varying load shares.

The bearings shown in this catalogue, however, are manufactured to the stricter tolerances of P4A or P2H and thus provide a certain guarantee for an even load behaviour. (Since the forces have been multiplied by the value $1/i^{0.7}$ in accordance with the equations [2.7] and table 2.2, the load rating C_a of the single bearing according to p. 8 has to be used. If the type is not known, the load rating of the quadruplex set can be divided by 1.62 to obtain the C_a of the single bearing).

2.2 Selection of preloads – axial stiffness and unloading factors in comparison

Operating the rolling elements with at least a minimum preload prevents an uneven wear of the balls. This wear is caused by a partial sliding instead of rolling of the balls with clearance in the no-load range between the bearing rings and the balls. In case of the O-arrangement (DB), starting at an outer axial load larger than 3 times the preload, the bearing facing away from the load becomes gradually unloaded. The balls in this bearing will start to slide with increasing load. (In case of the less frequently used X arrangement (DF), the bearing facing the load would be unloaded as load is applied to the inner ring.)

Relatively to the more frequently employed types of O arrangement, the X*Fv characteristic values for unloading the bearings which are not positioned directly in the flow of force, the axial stiffness factors in both load directions and the K_{Fv} preload factor for determination of the tightening torque of the nut are given (see page 27). (K_{Fv} does not take into account possible press fittings.) Bearing arrangements with a different number of bearings per direction result in a differing axial stiffness corresponding to the number of bearings in the respective direction. Preload values Fv see page 9.

Picture 2.2: Comparison of axial stiffness of similar bearings, unloading factors and fixing factors of locknuts for different arrangements.

3. 60° Super Precision Angular Contact Thrust Ball Bearings

IBC angular contact thrust ball bearings have been developed to meet the demands of high thrust load for ball screw support application.

The large contact angle of 60° allows for high thrust load with high stiffness. The radial load should not extend 90 % of the preload.

As angular contact bearings can carry load only in one direction they therefore have to be adjusted to another bearing of the same kind.

The bearings are primarily supplied as single ones or in sets of 2 or 4 bearings to be mounted in back-to-back arrangements.

Angular contact thrust bearings are manufactured for universal matching, thus they can be rearranged and can be mounted in any arrangement.

As a standard single bearings have a medium or high preload, sets have a V-marking, single doesn't.

Precision grades: Bore and O.D. are manufactured to precision class P4A; axial run out S_d and S_{ia} are restricted to P2A (see page 10).

Preload

60°-Angular contact bearings are available with light, medium and high preload. They are apt for mounting in sets. For preloading we recommend the locknuts of series MMRB or MMRS (starting page 28). With tight fits the preload will be enhanced.

Material of rings and balls

Standard: bearing steel 100Cr6 (1.3505)

Options:

CB: ceramic Si₃N₄ with speed increase of 35 %

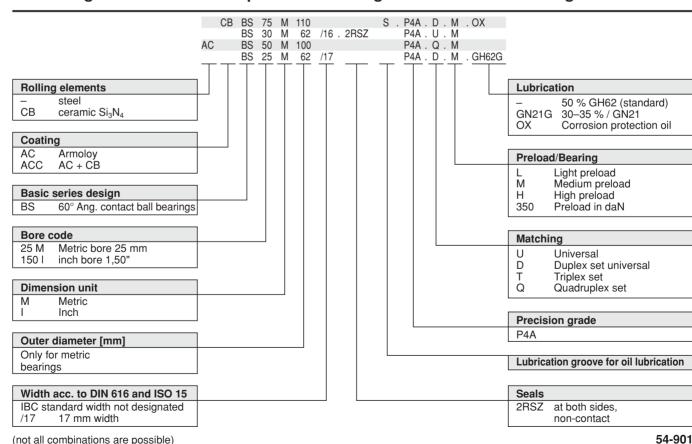
AC: rings thin dense chromium ATCoated (details to the option see page 34, glossary)

Cage: The one-piece glass fibre, reinforced polyamide cage is ball guided. As standard this is not designated. Themperature range –30 to 120 °C.

Lubrication:

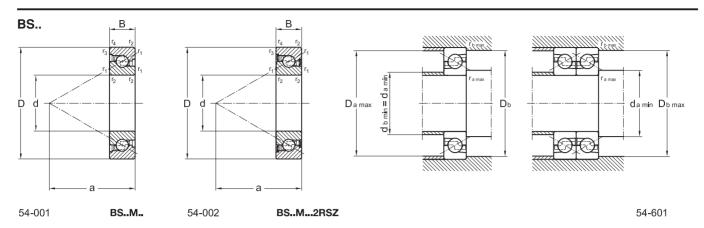
The bearings are supplied with approved special greases as standard:

- a) For lower and medium speed: with the high viscose BearLub GH62
- b) For top speed range: with BearLub GN21. For this grease the speed limits are given in the data tables on page 9 and 22. For technical information on greases see page 34.


(Bearings with oil lubrication holes on request).

Sealing

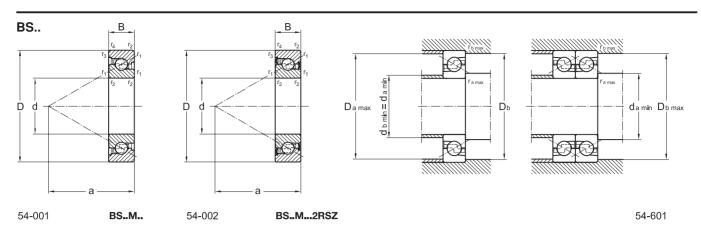
Most of the bearings are supplied as open bearings and can be combined with labyrinth-seals of series S acc. to page 29.


The types on page 8 marked with + are also manufactured with non-touching seals .2RSZ.

3.1 Designation of IBC 60° Super Precision Angular Contact Ball Bearings

3.2 Super Precision 60° Angular Contact Thrust Ball Bearings metric, inch

	Dimensio	ons				Basic bearing no.	Abı	utment a	and fille	t dimens	sions	Basic loa	d ratings	Weight
d	D	В	r _{1,2}	r ₃₄	а		r _{amax}	r _{bmax}	d_{amin}	D_{amax}	D_{bmax}	Ca	Coa	
	mm		min	min	~				mm				N	kg
17	47	15	0.6	0.6	36.5	BS17M47	1.0	0.6	26	38	40	25000	32100	0.13
20	47	14	0.6	0.6	36	BS20M47/14*	1.0	0.6	28	38	40	25000	32100	0.14
20	47	15	0.6	0.6	36.5	BS20M47	1.0	0.6	28	38	40	25000	32100	0.14
25	52	15	1.0	0.6	39	BS25M52 +	1.0	0.6	34	44	45	26500	37000	0.22
25	62	15	1.0	0.6	46.5	BS25M62 +	1.0	0.6	34	52	54	29200	42800	0.27
25	62	17	1.0	0.6	47.5	BS25M62/17* +	1.0	0.6	34	52	54	29200	42800	0.27
30	62	15	1.0	0.6	46	BS30M62 +	1.0	0.6	38	52	54	29200	42800	0.25
30	62	16	1.0	0.6	47	BS30M62/16* +	1.0	0.6	38	52	54	29200	42800	0.25
30	72	15	1.0	0.6	56	BS30M72 +	1.0	0.6	39	63	64	35600	55000	0.32
30	72	19	1.0	0.6	58	BS30M72/19* +	1.0	0.6	39	63	64	35600	55000	0.32
35	72	15	1.0	0.6	56	BS35M72 +	1.0	0.6	43	63	64	35600	55000	0.29
35	72	17	1.0	0.6	57	BS35M72/17* +	1.0	0.6	43	63	64	35600	55000	0.34
35	100	20	1.0	0.6	75	BS35M100 +	1.0	0.6	47	86	89	70500	116000	1.05
40	72	15	1.0	0.6	56	BS40M72 +	1.0	0.6	48	63	64	35600	55000	0.28
40	90	20	1.0	0.6	71.5	BS40M90 +	1.0	0.6	49	80	82	59000	90000	0.64
40	90	23	1.0	0.6	73	BS40M90/23* +	1.0	0.6	49	80	82	59000	90000	0.72
40	100	20	1.0	0.6	75	BS40M100 +	1.0	0.6	49	86	89	70500	116000	1.00
45	75	15	1.0	0.6	60	BS45M75	1.0	0.6	53	65	67	37900	61400	0.29
45	100	20	1.0	0.6	75	BS45M100 +	1.0	0.6	54	86	89	70500	116000	0.95
50	90	20	1.0	0.6	71.5	BS50M90	1.0	0.6	59	80	82	59000	90000	0.60
50	100	20	1.0	0.6	75	BS50M100 +	1.0	0.6	59	86	89	70500	116000	0.89
55	90	15	1.0	0.6	73	BS55M90 +	1.0	0.6	64	78	81	40700	74400	0.42
55	100	20	1.0	0.6	75	BS55M100	1.0	0.6	65	86	89	70500	116000	0.71
55	120	20	1.0	0.6	88	BS55M120	1.0	0.6	65	106	108	80800	137000	1.43
60	120	20	1.0	0.6	88	BS60M120	1.0	0.6	70	100	108	80800	137000	1.36
75	110	15	1.0	0.6	89	BS75M110	1.0	0.6	85	98	100	44500	93800	0.48
100	150	22.5	1.0	0.6	118	BS100M150	1.0	0.6	114	135	137	86400	192000	1.00
127	180	22.225	1.0	0.6	143	BS127M180	1.0	0.6	140	165	168	85200	239300	1.24
20	47	15.875	1.0	0.6	38	BS078 I	1.0	0.6	28	38	40	25000	32100	0.14
23.83		15.875	1.0	0.6	50	BS093 I	1.0	0.6	32	52	54	29200	42800	0.25
38.10		15.875	1.0	0.6	56	BS150 I	1.0	0.6	46	62	64	35600	55000	0.28
44.4		15.875	1.0	0.6	60	BS175 I	1.0	0.6	52	66	68	37900	61400	0.30


 $^{^{\}ast}$ Should no more be used in new applications.

+ with seals: suffix .2RSZ

Super Precision 60° Angular Contact Thrust Ball Bearings metric, inch

		Preload F	-v	Ax	ial stiffness	S _{ax} *	Limiting	speed (gre	ase n _F **)	Drag torque M _r ***		
d	L	М	Н	L	М	Н	L	М	Н	L	М	Н
mm		N			N/µm			min ^{−1}			Nm	
17	875	1750	3500	460	580	740	14300	12500	6200	0.04	0.08	0.16
20	875	1750	3500	460	580	740	14300	12500	6200	0.04	0.08	0.16
20	875	1750	3500	460	580	740	14300	12500	6200	0.04	0.08	0.16
25	1000	1900	3900	500	630	800	12500	10900	5400	0.05	0.07	0.18
25	1125	2250	4500	650	830	1050	10500	9100	4500	0.06	0.11	0.22
25	1125	2250	4500	650	830	1050	10500	9100	4500	0.06	0.11	0.22
30	1125	2250	4500	650	830	1050	10500	9100	4500	0.06	0.11	0.22
30	1125	2250	4500	650	830	1050	10500	9100	4500	0.06	0.11	0.22
30	1700	3400	6800	780	990	1260	8600	7500	3700	0.06	0.11	0.22
30	1700	3400	6800	780	990	1260	8600	7500	3700	0.06	0.11	0.22
35	1700	3400	6800	780	990	1260	8600	7500	3700	0.06	0.11	0.22
35	1700	3400	6800	780	990	1260	8600	7500	3700	0.06	0.11	0.22
35	3200	6400	12800	1090	1390	1760	6400	5600	2800	0.13	0.26	0.51
40	1700	3400	6800	780	990	1260	8600	7500	3700	0.06	0.11	0.22
40	2500	5000	10000	1035	1320	1680	6900	6000	3000	0.12	0.24	0.48
40	2500	5000	10000	1035	1320	1680	6900	6000	3000	0.12	0.24	0.48
40	3200	6400	12800	1090	1390	1760	6400	5600	2800	0.13	0.26	0.51
45	1700	3400	6800	890	1090	1390	8000	7000	3500	0.07	0.14	0.28
45	3200	6400	12800	1090	1390	1760	6400	5600	2800	0.13	0.26	0.51
50	2500	5000	10000	1035	1320	1680	6900	6000	3000	0.12	0.24	0.48
50	3200	6400	12800	1090	1390	1760	6400	5600	2800	0.13	0.26	0.51
55	1975	3950	7900	1030	1310	1660	6900	6000	3000	0.11	0.21	0.41
55	3200	6400	12800	1090	1390	1760	6400	5600	2800	0.13	0.26	0.51
55	3900	7800	15600	1340	1690	2150	5300	4600	2300	0.17	0.34	0.68
60	3900	7800	15600	1340	1690	2150	5300	4600	2300	0.17	0.34	0.68
75	2500	5000	10000	1280	1620	2060	5200	4500	2250	0.13	0.25	0.50
100	5250	10500	21000	1800	2280	2900	3800	3300	1650	0.27	0.54	1.09
127	4550	9100	18200	2100	2480	3160	3100	2700	1350	0.27	0.54	1.08
20			3500			750			4950			0.17
23.838			4500			1050			3450			0.23
38.100			7000			1300			3000			0.23
44.475			7000			1380			2850			0.28

For multiple arrangement see picture 2.2: factors K_a Stated values are for Duplex sets in O-arrangement; for X-arrangement factor 0.6; for Quad sets QBT 0.75; QBC 0.7;

max. rotational speed for L and M are valid for lubrication with GN21G

For multiple arrangement see picture 2.2: factor K_{Fv}

3.3 Tolerances of Super Precision 60° Angular Contact Thrust Bearings

Data table in µm

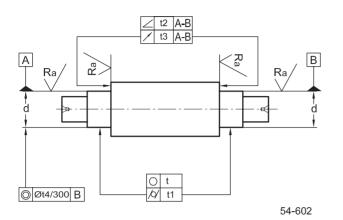
	Inner ring [mm]	Precision	Ø 0.6 to 10	10 18	18 30	30 50	50 80	80 120	120 150
$\Delta \mathbf{d}_{mp}$	Max. deviation of the mean bore diameter from the nominal	P4A	-4	-4	-4	- 5	- 5	-6	-7.5
K _{ia}	Radial runout of assembled bearing inner ring	P4A	2.5	2.5	2.5	4	4	5	6
S _d	Side face runout referring to bore of inner ring	P2A	1.3	1.3	1.3	1.3	1.3	2.5	2.5
S _{ia}	Side face runout with reference to the raceway of the assembled bearing inner ring	P2A	1.3	1.3	2.5	2.5	2.5	2.5	2.5
$\Delta \mathbf{B_s}$	Deviation of single inner ring width	P4A, P2A	-200	-200	-200	-200	-250	-320	-370
V _{Bs}	Ring width variation	P4A	2.5	2.5	2.5	2.5	4	4	5

	Outer ring [mm]	Precision	Ø 18 to 30	30 50	50 80	80 120	120 150	150 180	180 250
$\Delta \mathbf{D}_{mp}$	Max. deviation of mean outside diameter to nominal	P4A, P2H	- 5	- 5	- 5	-7.5	-9	-10	-10
K _{ea}	Radial runout of assembled bearing outer ring	P4A	4	5	5	5	7	7.5	10
S _D	Variation in inclination of outside cylindrical surface to outer ring side face	P2A	1.3	1.3	1.3	2.5	2.5	2.5	3.8
S _{ea}	Side face runout referring to raceway of assembled bearing outer ring	P2A	2.5	2.5	3.8	5	5	5	6.4

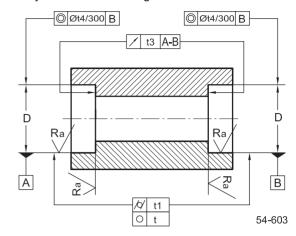
The width tolerances of the outer ring (ΔCs , Vc_s) correspond to those of inner ring (Δ_{Bs} ; V_{Bs}). The total width tolerance of a bearing set is the sum of the ones of the single bearings.

3.4 Proposed fits for Super Precision 60° Angular Contact Thrust Bearings

Nominal diameter	Precision	Ø	_	10	18	30	50	80	120
d shaft [mm]		incl.	10	18	30	50	80	120	180
Shaft tolerance	P4A	max.	-3	-3	-3	-4	-4	- 5	-6
Δd_1 fixed bearing		min.	- 7	– 7	– 7	-8	-9	-10	-12
Nominal diameter	Precision	Ø	18	30	50	80	120	150	180
D housing [mm]		incl.	30	50	80	120	150	180	250
Housing tolerance	P4A	max.	+5	+5	+5	+5	+7	+7	+7
ΔD_G fixed bearing		min.	0	0	0	-1	-1	-2	-2


Table 3.4: Summary of tolerances for adjacent parts for Super Precision 60° Angular Contact Thrust Bearings.

3.5 Tolerances of associated parts for Precision Angular Contact Thrust Bearings


Accuracy of form for shafts

Characteristic	Tolerance Symbol	Tolerance Desig- nation	Accuracy of form, Tolerance grade, Roughness class for Tolerance class of bearings P5 P4A P2A				
Circularity	0	t	<u>IT3</u> 2	<u>IT2</u> 2	<u>IT1</u> 2		
Cylindricity		t1	<u>IT3</u> 2	<u>IT2</u> 2	<u>IT1</u> 2		
Angularity		t2	-	<u>IT3</u> 2	<u>IT2</u> 2		
Runout	1	t3	IT3	IT3	IT2		
Coaxiality	0	t4	IT5	IT4	IT3		
Roughness R _a							
$d \le 80 \text{ mm}$		-	N4	N4	N3		
d > 80 mm		-	N5	N5	N4		

Table 3.5.1: Accuracy of form for shafts

Accuracy of form for housings

Characteristic	Tolerance Symbol	Tolerance Desig- nation	Tolerance Roughnes Tolerance	grade, ss class for class of b	earings
			P5	P4A	P2A
Circularity	0	t	<u>IT3</u> 2	<u>IT2</u> 2	<u>IT1</u> 2
Cylindricity	/2/	t1	<u>IT3</u> 2	<u>IT2</u> 2	<u>IT1</u> 2
Runout	1	t3	IT3	IT3	IT2
Coaxiality	0	t4	IT5	IT4	IT3
Roughness R _a					
D ≦ 80 mm		-	N5	N5	N4
80 < D ≦ 250		-	N6	N6	N5
D < 250 mm		-	N7	N7	N6

Table 3.5.2: Accuracy of form for housings

ISO Bas	sic Tolerar	nce Gra	ades a	cc. to	DIN 71	51			
Nomina		Tolera	ance g	rades					
Diamete	er								
Over	incl.	IT0	IT1	IT2	IT3	IT4	IT5	IT6	IT7
mm		μm							
6	10	0.6	1	1.5	2.5	4	6	9	15
10	18	0.8	1.2	2	3	5	8	11	28
18	30	1	1.5	2.5	4	6	9	13	21
30	50	1	1.5	2.5	4	7	11	16	25
50	80	1.2	2	3	5	8	13	19	30
80	120	1.5	2.5	4	6	10	15	22	35
120	180	2	3.5	5	8	12	18	25	40
180	250	3	4.5	7	10	14	20	29	46
250	315	4	6	8	12	16	23	32	52
315	400	5	7	9	13	18	25	36	57
400	500	6	8	10	15	20	27	40	63

Table 3.5.1: Basic tolerance grades acc. to DIN 7151

Roughness $R_{\rm a}$ of the axial shoulder at shaft, housing or spacers:

 $N6 = 0.8 \mu m$

Surface roughness Class	Roughness
	μm
N3	0.1
N4	0.2
N5	0.4
N6	0.8
N7	1.6

Table 3.5.4: Roughness

4. Precision Bearing Units with 60°-Angular Contact Thrust Bearings – Selection Criteria

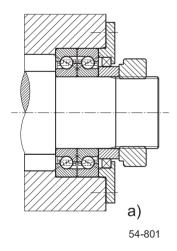
Applications of units with labyrinth seals greased for life: Ball screws (bs), satellite roller screws, worm gear drives (e. g. for circular tables, index tables) special purposes.

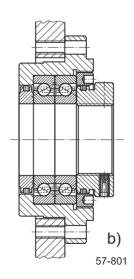
Basically the units are used on ball screws in machine tool (boring-, milling-, turning-, grinding-, spark erosion machines, machining centers, endfacing machines, gear cutting and finishing machines), measuring machines, industrial robots, sheet metal cutting machines, (presses, levelling machines, bending centers, laser cutting machines, laser marking machines, forming machines), woodworking machines and special purpose machines.

The big amount of applications have created a unit assembly system with their different needs regarding

- axial stiffness and capacity
- reduced heat development by less friction (labyrinth seal)
- speed (also with ceramic balls available)
- running accuracy
- form (flange or pillow block)
- arrangement.

Great flexibility


Some precision bearing units can be supplied with the same outside dimensions but with different bore sizes. This has been very helpful in the design of machine families of different length and table stroke, where the ball screws of smaller dia. would have reached the critical speed and therefore a bigger one had to be used. (Bearings with same outside diameter and width but different bore allow a standardisation of adjacent parts at low cost).


Simply mounting

Whereas at the beginning (a) ball screw bearings had to be built in separately with other parts, now the ready-to-mount units are the state of art. The mounting of complete subassemblies eases and speeds up the mounting. The avoidance of an axial reference face in the housing bore simplifies surrounding parts.

For the flange housings only a hole with a machined wall square to the housing axes is needed. The unit can then radially still be adjusted (b).

Users who machine the centering hole for the flange into their supports on CNC machines with the needed accuracy mount as shown in (c).

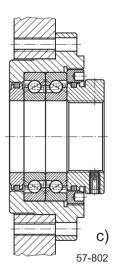


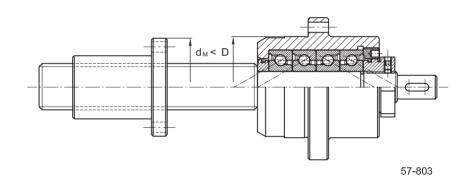
Figure 4.1: Development to easier to machine and to mount applications for ball screw supports.

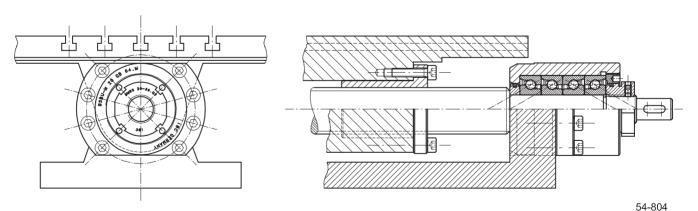
Precision Bearing Units with 60°-Angular Contact Thrust Bearings – Selection Criteria

Easy-to-mount BSBU, BSBU-M Precision Cartridge Units

The cartridge units flattened on both sides are characterized by easy handling in the planning and mounting phase.

The fact that they are flattened on both sides results in a low height, corresponding to the cartridge diameter. It was chosen so that in case of usual grading of the shaft seat, the cartridge outside diameter of the nut is slightly smaller than the bearing unit seat diameter.


When service is necessary, in case of a machine tool crash, the mounting personnel on site will appreciate that the module is easy to change (ball screw + bearing unit).


Owing to the skilfully selected diameter ratio (see drawing 57-803 and 57-804), it is possible to pull out the entire module easily.

In the same manner, a pre-assembled module is built in again quickly, so that maintenance times and thus standstill times are reduced.

The locknut with matching labyrinth seal, which has already been integrated into the BSBU-M series, allows for simple and secure preloading of precision cartridge units.

In case the cartridge unit has to be mounted from inside against a wall the locknut MMRS and the sealing S can be exchanged vice versa. The same applies for the pillow block series BSPB-M... as well as for the adapter of the nut bearing units BNBU and BNPB.

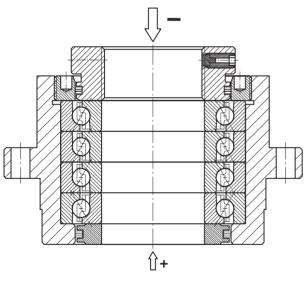
Precision Bearing Units with 60°-Angular Contact Thrust Bearings – Selection Criteria

Advantages of pillow block units

Whereas cartridge units had to be placed on supports in the past, the pillow block units are saving construction space and mounting time.

The tight-tolerance bases of the fixed and floating end units with the same reference dimensions of the BSPB, BSPB-M and BLPB series have proven to be beneficial (see abutment dimensions on page 24). The contact edge for the units can thus be machined with those of the guides. Pre-drilled pin-holes allow accurate fixing.

Mounting of driven nuts


IBC precision bearing units of the series BNBU and BNPB with integrated adapter are available for mounting on ball screw nuts (according to DIN 69051). These are used in particular for long ball screws. It is an advantage to drive the nut for its less accelerated mass.


A further advantage of a driven spindle clamped between two fixed end bearings is the fact that in case of an alternative nut drive, the bearings do not need to accommodate stretching loads.

The stretching of the spindle to compensate elongation when it warms up can easily be carried out there at the clamping points.

Depending on the requirements regarding stiffness, limit rotational speed or drag torque, units can be chosen with light (L), medium (M) or heavy (H) preload. The order code consists of the basic type and a suffix for the preload. For adapter units, it is possible to choose the hole pattern and the way of mounting, the cartridge form can additionally be chosen.

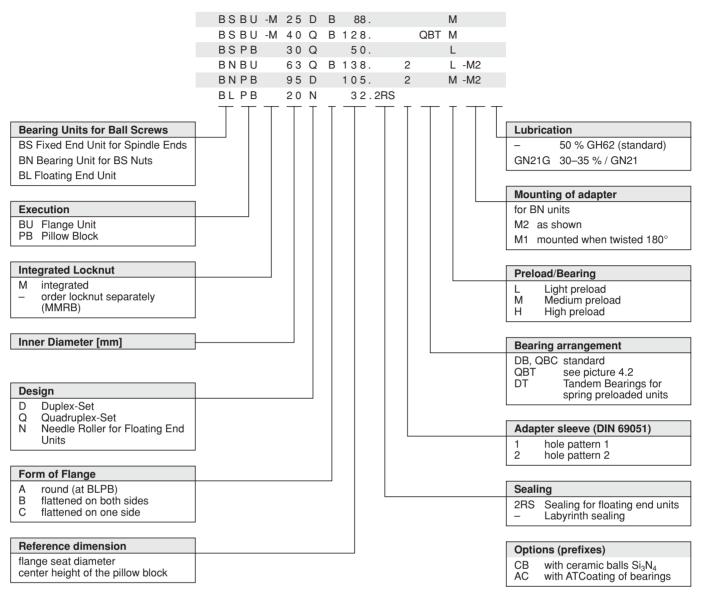
For bearing units with an integrated lubrication system for the ball screw nut (BNBUS) separate data sheets are available.

57-805

57-806

Figure 4.2: BSBU-M 40Q128 QBTM with arrangement Ø Ø Ø

BSPB.M 40Q65 QBTM with arrangement Ø Ø Ø


Units for predominating loads in one direction

Bearings of vertical or inclined spindles, which have to support a sometimes-considerable weight of the table, one direction may be predominant for all load cycles owing to inertia. In that case a unit with the bearing arrangement 3:1 (with the designation QBT before the preload) can be selected (see figure 4.2). The load shares of the single bearing result from the equations (page 5), stiffness, unloading values and tightening factors in figure 2.2, page 6 in connection with the specification for single bearings according to pages 8 and 9.

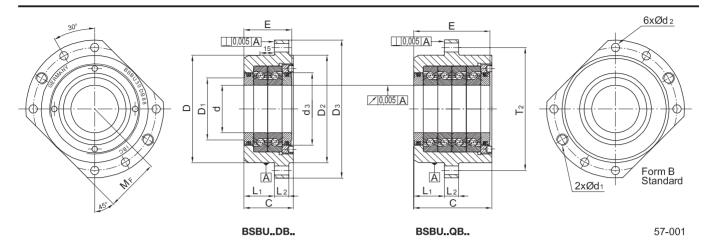
Designation of IBC Precision Bearing Units for Ball Screws

Not all combinations are available

57-901

For fixed end bearing units for higher speed, also bearings with ceramic balls (CB) can be offered. On request also with ATCoat (AC) for bearings.

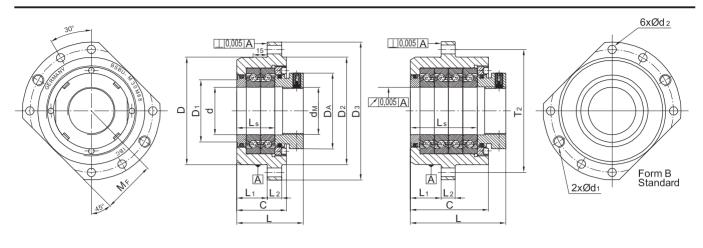
Bearing units with more bearings on request, as well as special housings with integrated coupling.


Lubrication

Bearings with standard lubrication GH 62; without suffix. Bearings with grease for higher speed: suffix GN21G (for more than 60 % of mentioned max. speed). Grease details see page 34.

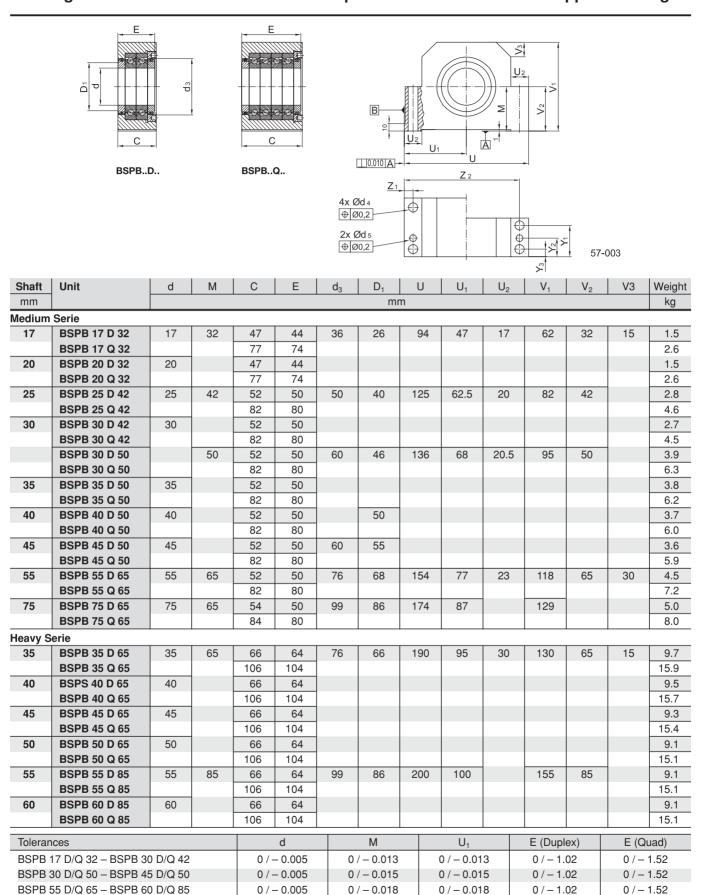
4.2 High Precision Flange Units for Spindle Ends of Ball Screws Support Bearings

Shaft	Unit	d	D	M_{F}	С	Е	d₁	d_2	d ₃	D ₁	D ₂	D ₃	Weight
mm	1						mm						kg
Medium	Serie												
17	BSBU 17 DB 64	17	64	32	47	44	M8	6.6	36	26	64	90	1.1
	BSBU 17 QB 64				77	74							1.7
20	BSBU 20 DB 64	20			47	44							1.1
	BSBU 20 QB 64				77	74							1.7
25	BSBU 25 DB 88	25	88	44	52	50	M12	9.2	50	40	88	120	2.3
	BSBU 25 QB 88				82	80							3.5
30	BSBU 30 DB 88	30			52	50							2.2
	BSBU 30 QB 88				82	80							3.4
	BSBU 30 DB 98		98	49	52	50			60	46	98	130	3.3
	BSBU 30 QB 98				82	80							4.7
35	BSBU 35 DB 98	35			52	50							3.2
	BSBU 35 QB 98				82	80							4.6
40	BSBU 40 DB 98	40			52	50				50			3.1
	BSBU 40 QB 98				82	80							4.5
45	BSBU 45 DB 98	45			52	50			60	55			3.8
	BSBU 45 QB 98				82	80							4.6
55	BSBU 55 DB 113	55	113	56.5	52	50			76	68	113	145	3.4
	BSBU 55 QB 113				82	80							5.1
75	BSBU 75 DB 138	75	138	69	54	50			99	86	138	170	4.1
	BSBU 75 QB 138				84	80							6.3
Heavy S										1		1	
35	BSBU 35 DB 128	35	128	64	66	64	M14	11.4	76	66	128	165	6.3
	BSBU 35 QB 128				106	104							10.1
40	BSBU 40 DB 128	40			66	64							6.1
	BSBU 40 QB 128				106	104							9.7
45	BSBU 45 DB 128	45			66	64							6.0
	BSBU 45 QB 128				106	104							9.5
50	BSBU 50 DB 128	50			66	64							5.9
	BSBU 50 QB 128		4.40	74	106	104			00	00	4.40	405	9.3
55	BSBU 55 DB 148	55	148	74	66	64			99	86	148	185	8.2
	BSBU 55 QB 148				106	104							12.9
60	BSBU 60 DB 148	60			66	64							7.9
	BSBU 60 QB 148				106	104							12.5
Tolera	nces				d		D		E ((Duplex)		E (Qua	ad)
BSBU	17 DB/QB 64 – BSE	30 DB	/QB 88	0 /	- 0.005		0/-0.0	013	0.	/ – 1.02		0 / - 1.	.52
BSBU	30 DB/QB 98 – BSE	BU 45 DB	/QB 98	0 /	- 0.005		0/-0.0	015	0.	/ – 1.02		0/-1	.52
BSBU	55 DB/QB 113 – BSE	3U 60 DB	/QB 148	0 /	- 0.005		0 / - 0.0	018	0.	/ – 1.02		0/-1	.52


Technical data see page 22.

Recommended locknuts serie MMRB... starting on page 30.

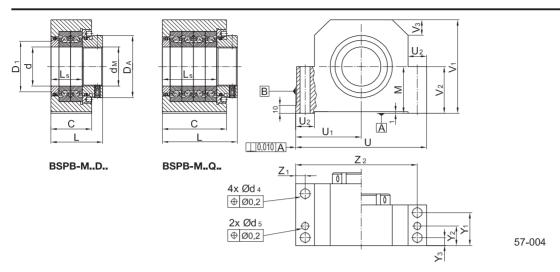
... for Spindle Ends of Ball Screw Support Bearings with integrated lock nut



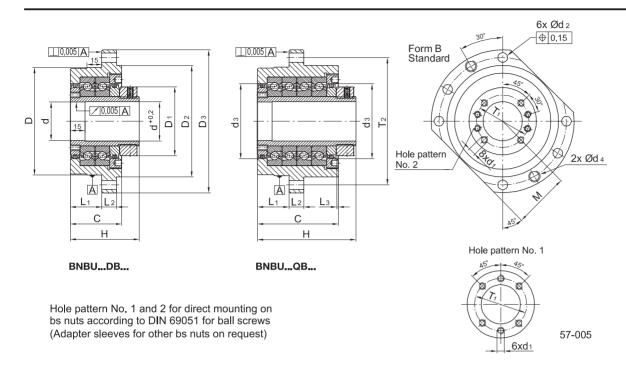
BSB	U-MDB	В	SBU-MQB	57-002

T ₂	L ₁	L ₂	D _A	L _S	L	Integrated locknut	Unit	Shaft
		m	m			see page 28		mm
Medium Ser	ie							
76	32	13	38	37	57	MMRS 17-36	BSBU-M 17 DB 64	17
				64	87		BSBU-M 17 QB 64	
				37	57	MMRS 20-36	BSBU-M 20 DB 64	20
				67	87		BSBU-M 20 QB 64	
102		15	58	40	65	MMRS 25-50	BSBU-M 25 DB 88	25
				70	95		BSBU-M 25 QB 88	
				40	65	MMRS 30-50	BSBU-M 30 DB 88	30
				70	95		BSBU-M 30 QB 88	
113			70	40	68	MMRS 30-60	BSBU-M 30 DB 98	
				70	98		BSBU-M 30 QB 98	
				40	68	MMRS 35-60	BSBU-M 35 DB 98	35
				70	98		BSBU-M 35 QB 98	
				40	68	MMRS 40-60	BSBU-M 40 DB 98	40
				70	98		BSBU-M 40 QB 98	
				40	68	MMRS 45-60	BSBU-M 45 DB 98	45
				70	98		BSBU-M 45 QB 98	
129			80	40	70	MMRS 55-76	BSBU-M 55 DB 113	55
				70	100		BSBU-M 55 QB 113	
154			105	40	70	MMRS 75-99	BSBU-M 75 DB 138	75
				70	100		BSBU-M 75 QB 138	
Heavy Serie								
146	43.5	17	80	52	82	MMRS 35-76	BSBU-M 35 DB 128	35
				92	122		BSBU-M 35 QB 128	
				52	82	MMRS 40-76	BSBU-M 40 DB 128	40
				92	122		BSBU-M 40 QB 128	
				52	82	MMRS 45-76	BSBU-M 45 DB 128	45
				92	122		BSBU-M 45 QB 128	
				52	82	MMRS 50-76	BSBU-M 50 DB 128	50
				92	122		BSBU-M 50 QB 128	
166				52	82	MMRS 55-99	BSBU-M 55 DB 148	55
				92	122		BSBU-M 55 QB 148	
			105	52	82	MMRS 60-99	BSBU-M 60 DB 148	60
				92	122		BSBU-M 60 QB 148	

4.3 High Precision Pillow Block Units for Spindle Ends of Ball Screw Support Bearings


Technical data see page 22.

Recommended locknuts serie MMRB... starting on page 30.


... for Spindle Ends of Ball Screw Support Bearings with integrated lock nut

Y ₁	Y ₂	Y ₃	Z ₁	Z ₂	d ₄	d ₅	D _A	L _S	L	Integrated locknut	Unit	Shaft
				mr	n					see page 28		mm
Mediun	n Serie											
38	22.0	9	8.5	85.5	9	7.8	38	37	57	MMRS 17-36	BSPB-M 17 D 32	17
68								67	87		BSPB-M 17 Q 32	
38								37	57	MMRS 20-36	BSPB-M 20 D 32	20
68								67	87		BSPB-M 20 Q 32	
42	25.0	10	10	115.0	11	9.8	58	40	65	MMRS 25-50	BSPB-M 25 D 42	25
72								70	95		BSPB-M 25 Q 42	
42								40	65	MMRS 30-50	BSPB-M 30 D 42	30
72								70	95		BSPB-M 30 Q 42	
42				126.0	13		70	40	68	MMRS 30-60	BSPB-M 30 D 50	
72								70	98		BSPB-M 30 Q 50	
42								40	68	MMRS 35-60	BSPB-M 35 D 50	35
72								70	98		BSPB-M 35 Q 50	
42								40	68	MMRS 40-60	BSPB-M 40 D 50	40
72								70	98		BSPB-M 40 Q 50	
42								40	68	MMRS 45-60	BSPB-M 45 D 50	45
72								70	98		BSPB-M 45 Q 50	
40.5	26.0	11.5	11.5	142.5			80	40	70	MMRS 55-76	BSPB-M 55 D 65	55
70.5								70	100		BSPB-M 55 Q 65	
40.5				162.5			105	40	70	MMRS 75-99	BSPB-M 75 D 65	75
70.5								70	100		BSPB-M 75 Q 65	
Heavy	Serie		•						•			
53	32.0	13	15	175.0	18	11.8	80	52	82	MMRS 35-76	BSPB-M 35 D 65	35
93								92	122		BSPB-M 35 Q 65	
53								52	82	MMRS 40-76	BSPB-M 40 D 65	40
93								92	122		BSPB-M 40 Q 65	
53								52	82	MMRS 45-76	BSPB-M 45 D 65	45
93								92	122		BSPB-M 45 Q 65	
53								52	82	MMRS 50-76	BSPB-M 50 D 65	50
93								92	122		BSPB-M 50 Q 65	
53				185.0				52	82	MMRS 55-99	BSPB-M 55 D 85	55
93								92	122		BSPB-M 55 Q 85	
53							105	52	82	MMRS 60-99	BSPB-M 60 D 85	60
93								92	122		BSPB-M 60 Q 85	

4.4 High Precision Flange Units for Ball Screw Nuts

KGT	Unit	d	D	М	С	Н	d ₁	d ₂	d_3	d ₄	D ₁	D_2	D_3	T ₁	T ₂	L ₁	L ₂	L ₃	Hole
do x P									mm										pattern
16x 5	BNBU 28 DB 98	28	98	49	52	70	M5	9.2	60	M12	70	98	130	38	113	32	15	2	1
20x 5	BNBU 36 DB 98	36			52	70	M6							47					
-																			
25x 5	BNBU 40 DB 113	40	113	56.5	52	70			76		80	113	145	51	129				
25x10	BNBU 40 QB 113				82	100													
32x 5	BNBU 50 DB 138	50	138	69	54	70	M8		99		105	138	170	65	154			4	
32x10	BNBU 50 QB 138				84	100													
40x 5	BNBU 63 DB 138	63			54	70								78					2
40x10	BNBU 63 QB 138				84	100													
50x 5	BNBU 75 DB 178	75	178	89	77	101	M10	11.4	132	M14	140	178	215	93	197	50	20		
50x10	BNBU 75 QB 178				122	146													
63x 5	BNBU 90 DB 210	90	210	105	77	105			162		175	210	248	108	230				
63x10	BNBU 90 QB 210				122	150													
63x20	BNBU 95 DB 210	95			77	105	M12							115					
	BNBU 95 QB 210				122	150													
80x10	BNBU 105 DB 210	105			77	105								125					
	BNBU 105 QB 210				122	150													

Technical data see page 27

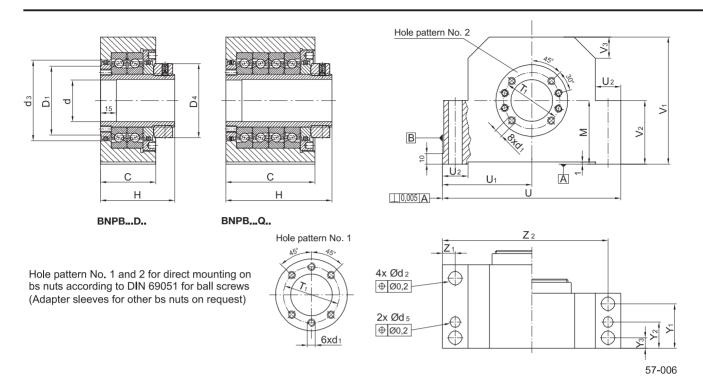
Tolerances Housing	d	D
BNBU 28 DB/QB 98 - BNBU 36 D/Q 98	+ 0.003 / - 0.010	0 / - 0.015
BNBU 40 DB/QB 113 - BNBU 105 D/Q 210	+ 0.003 / - 0.010	0 / - 0.018

For bearing units with integrated lubrication of ball screw nuts, please ask for separate data sheets (Serie BNBUS).

Adapter sleeves for other bs nuts on request.

Order example:

For a ballscrew Ø 63 x 10 with abutment dimension acc. to DIN 69051 a standard flange unit with hole pattern no. 2 and two bearings are needed as shown.


Medium preload is chosen: BNBU 90DB210. 2.M.M2

Mounting M1: connecting thread on right side, mounted opposite to mounting seat D.

4.5 High Precision Pillow Block Units for Ball Screw Nuts

KGT	Unit	d	М	С	Н	d ₁ *	d_3	d_4	d_5	D_1	D_4	T ₁	U	U ₁	U_2	V ₁	V ₂	V ₃	Y ₁	Y ₂	Y ₃	Z ₁	Z ₂ B
do x P													mm										
16x 5	BNPB 28 D 50	28	50	52	70	M5	60	13	9.8	55	70	38	136	68	20.5	98	50	20	42	25.0	10	10	126.0 1
20x 5	BNPB 36 D 50	36		52	70	M6						47											
25x 5	BNPB 40 D 65	40	65	52	70		76			68	80	51	154	77	23	118	65		40.5	26.0	11.5	11.5	142.5
25x10	BNPB 40 Q 65			82	100														70.5				
32x 5	BNPB 50 D 65	50		54	70	M8	99			89	105	65	174	87		129			40.5				162.5
32x10	BNPB 50 Q 65			84	100														70.5				
40x 5	BNPB 63 D 65	63		54	70							78							40.5				2
40x10	BNPB 63 Q 65			84	100														70.5				
50x 5	BNPB 75 D 85	75	85	77	101	M10	132	18	11.8	114	140	93	230	115	30	170	85	30	57	37.0	17	15	215.0
50x10	BNPB 75 Q 85			122	146														100				
63x 5	BNPB 90 D 105	90	105	77	105		162	21		140	175	108	280	140	35	207	105	50	57			17	263.0
63x10	BNPB 90 Q 105			122	150														100				
63x20	BNPB 95 D 105	95		77	105	M12						115							57				
	BNPB 95 Q 105			122	150														100				
80x10	BNPB 105 D 105	105		77	105							125							57				
	BNPB 105 Q 105			122	150														100				

 $^{^{\}ast}$ preferable to be mounted with socket head cap screws to DIN 912, tensile strength class 8.8

Tolerances	Housing	d	М	U ₁
BSPB 28 D/Q 50 -	- BNPB 36 D/Q 50	+ 0.003 / 0.010	0 / - 0.015	0 / - 0.013
BSPB 40 D/Q 65 -	- BNPB 63 D/Q 65	+ 0.003 / 0.010	0 / - 0.018	0 / - 0.015
BSPB 75 D/Q 85 -	- BNPB 105 D/Q 105	+ 0.003 / 0.010	0 / - 0.018	0 / - 0.018

Adapter sleeves for other bs nuts on request.

Order example:

For a ballscrew Ø 80 x 10 heavy load with 4 bearings, adapter hole pattern No. 2 according to DIN 69051, light preload, mounted as shown above: **BNPB 105Q105 2.L.M2**

(Mounting M1: connecting thread on right side, mounted below outer locknut).

4.6 Technical Data Table of Flange and Pillow Block Units

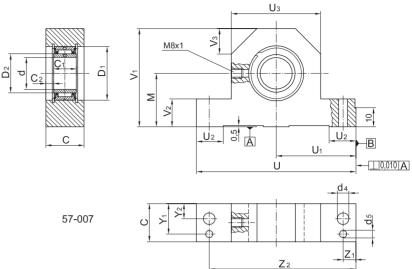
BSBU..DB.. BSBU-M..DB.. BSPB..D.. BSPB-M..D.. BSBU..QB.. BSBU-M..QB.. BSPB..Q.. BSPB-M..Q..

Designation		Axial ca	pacity	F	Preload	F _v	Ax.	stiffnes	s S _{ax}	Spee	ed greas	e n _F	Drag	troqu	ıe M _r
BSBU	BSPB	Ca	Coa	L	M	Н	L	M	Н	L	M	Н	L	M	Н
BSBU-M	BSPB-M	N			N			N/µm			min ^{−1}			Nm	
Duplex Serie															
BSBU 17 DB 64 BSBU 20 DB 64		25000	32000	875	1750	3500	450	570	730	14300	12500	6200	0.08	0.16	0.32
BSBU 25 DB 88 BSBU 30 DB 88	BSPB 25 D 42 BSPB 30 D 42	29200	43600	1125	2250	4500	640	810	1030	10500	9100	4500	0.11	0.22	0.43
BSBU 30 DB 98 BSBU 35 DB 98 BSBU 40 DB 98		35600	55000	1700	3400	6800	770	970	1240	8600	7500	3700	0.11	0.22	0.43
BSBU 45 DB 98	BSPB 45 D 50	37900	62000	1700	3400	6800	770	970	1240	8000	7000	3500	0.14	0.28	0.56
BSBU 55 DB 113		40700	74000	1975	3950	7900	1020	1300	1640	6900	6000	3000		0.42	
BSBU 75 DB 138	BSPB 75 D 65	44500	94000	2500	5000	10000	1320	1650	2120	5200	4500	2250	0.26	0.50	1.00
Heavy Serie															
BSBU 35 DB 128 BSBU 40 DB 128 BSBU 45 DB 128 BSBU 50 DB 128	BSPB 40 D 65 BSPB 45 D 65	70500	116000	3200	6400	12800	1050	1360	1740	6400	5600	2800	0.26	0.51	1.07
BSBU 55 DB 148 BSBU 60 DB 148		80800	137800	3900	7800	15600	1320	1650	2120	5300	4600	2300	0.34	0.68	1.36
Quadruplex Serie															
BSBU 17 QB 64 BSBU 20 QB 64		40600	64000	1750	3500	7000	900	1040	1460	10000	8700	4300	0.16	0.32	0.64
BSBU 25 QB 88 BSBU 30 QB 88		47500	86000	2250	4500	9000	1280	1620	2060	7300	6300	3100	0.22	0.43	0.86
BSBU 30 QB 98 BSBU 35 QB 98 BSBU 40 QB 98	BSPB 35 Q 50	57800	110000	3400	6800	13600	1540	1940	2480	6000	5200	2600	0.22	0.43 (0.86
BSBU 45 QB 98	BSPB 45 Q 50	61600	123000	3400	6800	13600	1540	1940	2480	5600	4900	2400	0.28	0.56	1.02
BSBU 55 QB 113	BSPB 55 Q 65	66100	178000	3950	7900	15800	2040	2600	3280	4800	4200	2100	0.44	0.84	1.64
BSBU 75 QB 138	BSPB 75 Q 65	72300	188000	5000	10000	20000	2640	3300	4240	3500	3100	1550	0.52	1.00	2.00
Heavy Serie															
BSBU 35 QB 128 BSBU 40 QB 128 BSBU 45 QB 128 BSBU 50 QB 128	BSPB 40 Q 65 BSPB 45 Q 65	114500 2	232000	6400	12800	25600	2100	2720	3480	4450	3900	1950	0.52	1.02	2.04
BSBU 55 QB 148 BSBU 60 QB 148		131000 2	274000	7800	15600	31200	2640	3300	4220	3700	3200	1600	0.68	1.36	2.72

with adapter sleeve for ball screw nuts acc. to DIN 69051 BNBU..DB.., BNBU..QB.., BNPB..D... BNPB..Q..

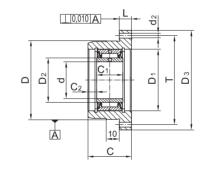
KGT	Designation		Axial c	apacity	Р	reload	F _v	Ax. s	stiffnes	s S _{ax}	Spee	d grea	se n _F	Drag	troqu	ıe M _r
do x P	BNBU	BNPB	Ca	Coa	L	M	Н	L	M	Н	L	M	Н	L	M	Н
	BNBU-M	BNPB-M		N		N			N/µm			min ⁻¹			Nm	
16x 5	BNBU 28 DB 98	BNPB 28 D 50	37900	62000	1700	3400	6800	840	1050	1330	8600	7500	3700	0.14	0.28	0.56
20x 5	BNBU 36 DB 98	BNPB 36 D 50	37900	62000	1700	3400	6800	840	1050	1330	8600	7500	3700	0.14	0.28	0.56
25x 5	BNBU 40 DB 113	BNPB 40 D 65	40700	74000	1975	3950	7900	1010	1260	1610	6900	6000	3000	0.22	0.42	0.32
25x10	BNBU 40 QB 113	BNPB 40 Q 65	66100	148000	3900	7800	15600	2050	2560	3250	4800	4200	2100	0.44	0.84	1.64
32x 5	BNBU 50 DB 138	BNPB 50 D 65	44500	94000	2500	5000	10000	1230	1570	2010	5200	4500	2250	0.26	0.50	1.00
32x10	BNBU 50 QB 138	BNPB 50 Q 65	72300	188000	5000	10000	20000	2500	3180	4100	3500	3100	1550	0.52	1.00	2.00
40x 5	BNBU 63 DB 138	BNPB 63 D 65	44500	94000	2500	5000	10000	1230	1570	2010	5200	4500	2250	0.26	0.50	1.00
40x10	BNBU 63 QB 138	BNPB 63 Q 65	72300	188000	5000	10000	20000	2500	3180	4100	3500	3100	1550	0.52	1.00	2.00
50x 5	BNBU 75 DB 178	BNPB 75 D 65	86400	192000	5200	10400	20800	1800	2280	2900	3800	3300	1650	0.27	0.53	1.06
50x10	BNBU 75 QB 178	BNPB 75 Q 65	140000	384000	10400	20800	41600	3600	4560	5800	2600	2300	1150	0.54	1.06	2.12
63x 5	BNBU 90 DB 210	BNPB 90 D 105	85200	240000	4550	9100	18200	1950	2500	3150	3100	2700	1350	0.27	0.54	1.08
63x10	BNBU 90 QB 210	BNPB 90 Q 105	138000	480000	9100	18200	36400	3900	5000	6300	2100	1900	950	0.54	1.08	2.16
63x20	BNBU 95 DB 210	BNPB 95 D 105	85200	240000	4550	9100	18200	1950	2500	3150	3100	2700	1350	0.27	0.54	1.08
	BNBU 95 QB 210	BNPB 95 Q 105	138000	480000	9100	18200	36400	3900	5000	6300	2100	1900	950	0.54	1.08	2.16
80x10	BNBU 105 DB 210 BNBU 105 QB 210		85200 138000	240000 480000	4550 9100	9100 18200	18200 36400	1950 3900	2500 5000	3150 6300	3100 2100	2700 1900	1350 950	0.27 0.54	0.54 1.08	1.08 2.16

On request a speed increase of 35 % is possible by use of ceramic balls. Then the static capacity Coa will be reduced to 70 % .



4.7 High Precision Floating End Units

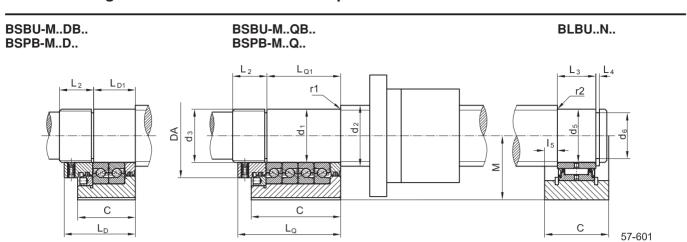
Super Precision Pillow Block Bearing Units for Supporting Floating End of Shaft BLPB..N.. .2RS


Tolerances	M	U₁
BLPB 20 N 32	0 / -0,013	0 / -0,013
BLPB 25 N 42	0 / -0,013	0 / -0,013
BLPB 30 N 50	0 / -0,015	0 / -0,015
BLPB 40 N 65	0 / -0,018	0 / -0,018
BLPB 50 N 85	0 / -0,018	0 / -0,018

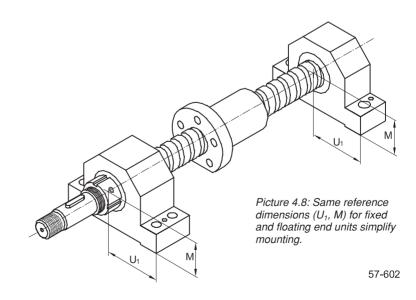
d according PN DIN 620 Maximum speed see cartridge bearing unit

Shaft	Designation	d	М	С	C ₁	C ₂	D_1	D_2	U	U ₁	U ₂	U ₃	V ₁	V ₂	V ₃	Y ₁	Y ₂	Z_1	Z_2	d_4	d_5	С	Co
mm			mm															N	l				
20	BLPB 20 N 32	20	32	30	18	6	37	25	94	47	16	56	59	15	15	24.0	12	8.5	85.5	9	5.8	17300	19900
25	BLPB 25 N 42	25	42	30	18	6	42	30	125	62.5	21	70	77	22	20	24.0	12	10	115	9	5.8	19300	24200
30	BLPB 30 N 50	30	50	30	18	6	47	35	136	68	21	80	88	28	20	24.0	12	10	126	9	5.8	21100	28500
40	BLPB 40 N 65	40	65	40	23	8.5	62	48	190	95	30	100	108	38	20	30.0	15	15	175	13	7.8	36000	53000
50	BLPB 50 N 85	50	85	40	23	8.5	72	58	200	100	30	110	138	48	30	30.0	15	15	185	13	7.8	40000	64000

Cartridge Bearing Units for Supporting Floating End of Shaft BLBU..N... 2RS


Shaft	Designation	d	D	С	C ₁	C ₂	D ₁	D ₂	D ₃	L	Т	d_2	n _{grease}	С	Co
mm							mm						min ^{−1}	١	١
10	BLBU 10 N 32	10	32	25	14	5.5	22	14	52	6	42	4.5	13000	6800	6900
12	BLBU 12 N 35	12	35	25	14	5.5	24	16	55	6	45	4.5	12000	7600	8300
17	BLBU 17 N 40	17	40	26	14	6	30	20	60	6	50	4.5	9000	8800	11000
20	BLBU 20 N 50	20	50	30	18	6	37	25	70	8	60	4.5	7500	17300	19900
25	BLBU 25 N 55	25	55	30	18	6	42	30	75	8	65	4.5	6500	19300	24200
30	BLBU 30 N 60	30	60	32	18	6	47	35	80	8	70	4.5	5500	21100	28500
35	BLBU 35 N 70	35	70	38	21	8.5	55	42	90	10	80	5.5	4800	26500	39500
40	BLBU 40 N 80	40	80	43	23	10	62	48	110	10	95	5.5	4200	36000	53000
45	BLBU 45 N 85	45	85	43	23	10	68	52	110	10	98	5.5	3900	38000	59000
50	BLBU 50 N 90	50	90	44	23	10.5	72	58	120	10	105	5.5	3500	40000	64000

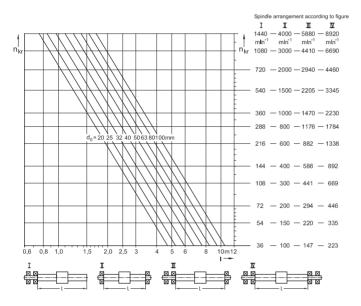
Tolerances of Cartridge B	earing Units		
Inner Diameter	d		PN DIN 620
Cartridge Diameter	D	32 - 80	0 / -0.013
		85 – 90	0 / -0.015


4.8 Mounting Dimensions for Ball Screw Spindles

				Fi	xed er	nd					Centre height			Flo	ating	end		
Designation	d ₁	d ₂	d₃ 4h/6h	D _A	L_D	L _{D1}	L _Q	L _{Q1}	L ₂	r _{1max}	М	d₅ j5	d ₆ h11	L ₃	L ₄	l ₅	r _{2max}	Designation
									mm	•								
Medium Serie																		
BSPB-M 17.32	17	23	M 17 x 1	38	57	36	87	65	24	0.5	32	20	19.2	18	1.2	6	0.3	BLPB-20N32
BSPB-M 20.32	20	26	M 20 x 1															
BSPB-M 25.42	1			58	65	39	95	68	29	0.8	42	25	24	18	1.2	6	0.3	BLPB-25N42
BSPB-M 30.42	30	-																
BSPB-M 30.50		1 1	M 30 x 1.5	70	68	39	98	68	32	0.8	50	30	29	18	1.5	6	0.3	BLPB-30N50
BSPB-M 35.50		1 1	M 35 x 1.5															
BSPB-M 40.50																		
BSPB-M 45.50	_	_	M 45 x 1.5															
BSPB-M 55.65		1 1	M 55 x 2	80	70	39	100	68	34	0.8	65	50	48.5	23	1.5	8.5	0.6	BLPB-50N85
BSPB-M 75.65	75	84	M 75 x 2	105														
Heavy Serie																		
BSPB-M 35.65	35	43	M 35 x 1.5	80	82	51	122	90	34	0.8	65	40	38.5	23	1.5	8.5	0.6	BLPB-40N65
BSPB-M 40.65	40	48	M 40 x 1.5															
BSPB-M 45.65	1	1 -																
BSPB-M 50.65	50	59	M 50 x 1.5															
BSPB-M 55.85				105	82	51		90	34		85	50	48.5	23	1.5	8.5	0.6	BLPB-50N85
BSPB-M 60.85	60	70	M 60 x 2															

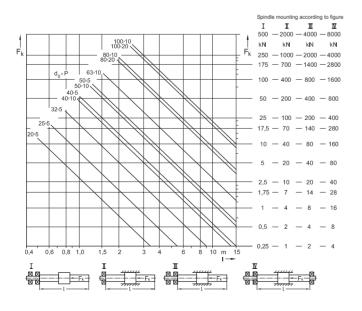
The following cartridge units have the same dimensions as pillow block units:

Medium Serie		Tolerance d ₁ [µm]
BSBU-M 17.64	BSPB-M 17.32	-3/-7
BSBU-M 20.64	BSPB-M 20.32	
BSBU-M 25.88	BSPB-M 25.42	-3/-7
BSBU-M 30.88	BSPB-M 30.42	
BSBU-M 30.98	BSPB-M 30.50	-4/-8
BSBU-M 35.98	BSPB-M 35.50	
BSBU-M 40.98	BSPB-M 40.50	
BSBU-M 45.98	BSPB-M 45.50	-4/-8
BSBU-M 55.113	BSPB-M 55.65	-4/-9
BSBU-M 75.138	BSPB-M 75.65	-4/-9
Heavy Serie		
BSBU-M 35.128	BSPB-M 35.65	-4/-8
BSBU-M 40.128	BSPB-M 55.85	
BSBU-M 45.128	BSPB-M 45.65	
BSBU-M 50.128	BSPB-M 50.65	
BSBU-M 55.148	BSPB-M 55.85	-4/-9
BSBU-M 60.148	BSPB-M 60.85	


4.9 Criteria for Bearing Arrangements at Ball screws

Application examples – influence of bearing arrangement on critical speed, spindle buckling resistance and stiffness.

The mounting and bearing arrangement at a spindle influences the critical speed, the buckling behaviour and the total stiffness.


4.9.1 Critical Rotational Speed nkr

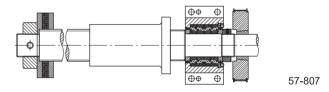
The critical rotational speed (1st order) where the spindle starts to bulge depends on the spindle diameter d_o, the non-support spindle length I and the bearing arrangement. The permissible speed should be obtained using factor 0.8 of the diagram value.

4.9.2 Buckling

Very long and thin spindles must be checked for buckling. An alternative bearing arrangement increases the permissible axial load.

4.9.3 Stiffness

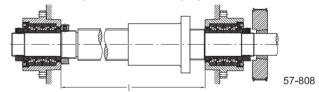
The axial stiffness of a ball screw Ka_{BS} is mainly dependant on (in precisely this order) the stiffness of the spindle as follows:

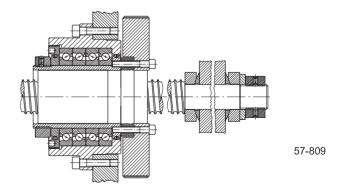

$$\frac{1}{Ka_{BS}} = \frac{1}{Ka_{S}} + \frac{1}{Ka_{N}} + \frac{1}{Ka_{B}}$$
 [4.9.3]

The fundamentally different type of clamping (of the assembly) determines the stiffness of the spindle as follows:

1) Fixed clamping at one end

$$Ka_{S} = \frac{A \cdot E}{I \cdot 10^{3}} \left[\frac{N}{\mu m} \right]$$
 [4.9.4]

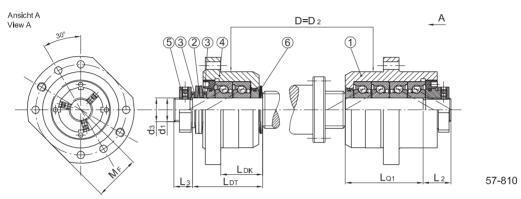

A [mm²] cross section of the spindle
E [N/mm²] Young's modulus
I [mm] distance ball screw nut/bearing


2) Fixed clamping at both ends

$$Ka_{S} = \frac{4 \cdot A \cdot E}{I \cdot 10^{3}} \left[\frac{N}{\mu m} \right]$$
 [4.9.5]

a) for driven spindle (see also page 19, 32)

b) for driven nut (see page 20), e.g. assembled with BNBU 63QB130 2.M.M2 with integrated labyrinth seals, n = 1000 min⁻¹. Spindle Ø 40 x 10 fixed at ends.


4.9 Criteria for Bearing Arrangements at Ball screws

3) Spring-preloaded Fixed End Floating End Combinations


Where a high operating speed leads to a high heat generation and expansion of the spindle, a fixed clamping at both ends is no longer useful. In this case it is better to clamp one end and to preload the other end by means of springs. The required preload can be set via the springs. By selecting an appropriate spring tension, the expansion due to heat is practically compensated without loss of preload and the stiffness of the spindle is kept on a constant level.

The two mounting examples with drawings for inquiry (see p. 33) are helpful in dealing with specific customer wishes.

The first example shows the combination of cartridge units, the second the combination of pillow block units. Of course, it is also easily possible to combine cartridge and pillow block units, because the final processing for the spindles is the same for both.

Ball screw supported at both ends with BSBU-M... QB + BSBU ... DB ... DT+PLS, can be stretched and preloaded via securable locknuts.

Ball screw supported at both ends with BSPB-M ... QB + BSPB ... D ... DT+PLS,, can be stretched and preloaded via securable locknuts.

In addition to the arrangement with spring-preloaded end in DT arrangement, fixed end and if applicable, floating end QBT arrangements are possible, too (see p. 14).

Combinations of fixed end bearing units with floating end bearing units, series BLPB and BLBU

Whereas the stretching of the spindle and increasing the stiffness plays the most important role in case of fixed end bearing units and spring-preloaded units, preventing the

spindle end from whirling around is the main objective here (see p. 23).

For combinations with series BSPB fixed end pillow block units, the pillow block units were designed with the same centre height and the same lateral stopping dimension. This permits the units to be adjoined to the same machined reference edge. The alignment is thus facilitated (see figure 57-601, 57-602, p. 24).

5. IBC Precision Locknuts and Labyrinth Seals

Applications

IBC Precision Locknuts are used for high-precision application owing to their high degree of accuracy. The no longer necessary retaining groove in the shafts (for the formerly used lock washers) facilitates production and assembly. The material cross section is maintained and the notch effect is not increased un-necessarily. Accuracy is increased by elimination of the imprecise lock washers (axial runout is reduced).

Tolerances

A high accuracy of the axial eccentricity according to IT3, ISO basic tolerances according to DIN 7151 (see p. 11), will be achieved by precision-machining the inner thread with its securing elements and the face in one operation. The face will be additionally compressed during machining. The securing elements, which are also profiled, bear on the thread flanks. The thread is manufactured with a tolerance of 4H according to DIN 13 T21-24. From M210x4 on, the tolerance is 6H.

Design

For compact applications (lightest weight), series MMR locknuts are used. The locknut in recessed locations which cannot be reached radially (housing bores) are secured using the axially accessible socket set screws on the MMA and MBA series nuts. This option requires a larger width because of the inner construction. From \emptyset 20 on, the MBA model is supplied. The permissible axial load corresponds to the MMR nut.

The same cross section as MBA is used for MMRB and thus permits larger loads and tightening torques. This is of interest in particular for preloading bearings supporting a high axial load (in ball screws, for instance).

Nuts with Labyrinth Seal

The MMRBS and MBAS series additionally have a set of laminar rings made out of spring steel, which may create a compact labyrinth seal in conjunction with the housing where limited space is available. The intermediate space of the labyrinth area must be filled with grease before and after mounting.

The cross section of the series MMRS nuts with similar properties as MMRBS nuts were designed to match the series BS 60° Super Precision Angular Contact Thrust Ball Bearings and the MD Seal Nuts (see page 24, 28 and 29). These are available in the standard sizes as well as in special sizes (different cross section) or made from stainless steel or with ATCoating.

Abutment and Fillet Dimensions

The recommended tolerance of the counter thread of the shaft is "medium" 6g, 6h or "fine" 4h for higher accuracy requirements (machine tools).

Strength of the Nut Threads

Threads up to M50: 1000 N/mm² Threads up to M55 – M85: 870 N/mm² Threads from M90 on: 700 N/mm² The permissible axial loads are applicable to bolt threads with a tensile strength of at least 700 N/mm². In case of dynamic load, 75 % of Fa is permissible.

Mounting

Nut to be screwed in with all locking devices in unchanged positions. Use spanners to tighten the locknuts with approx. double of the nominal torque (to avoid setting of the clamped parts), loosen and retighten them applying the nominal torque. The necessary tightening torque depends on the required preload F_{ν} [N] and can be determined approximately using the following equation:

(A single tightening with M_D is sufficient for the heavily preloaded 60° super precision angular contact thrust ball bearings).

Securing against loosening

First tighten securing screw via hexagon socket set screw lightly until you notice resistance. Tighten second screw located opposite. If existing, tighten third screw (only in case of MMRB, MMRBS and MMRS) and fourth screw in model ...Q. Retighten screws. For maximum tightening torques of the socket set screws, please refer to table.

Socket set screws	Key size S [mm]	Tightening torque Max. M _A [Nm]
M4	2	2
M5 M6	2,5 3	4 7
M8	4	, 18
M10	5	34
M12	6	60

Table 5.1: Maximum tightening torques of securing devices

This results in high loosening torques to prevent unintended loosening even for spindles running clockwise and counter-clockwise intermittently.

Disassembly

Loosen securing elements first for disassembly. Since clamping does not deform the profiled securing elements made from hard bronze, the nut can be used repeatedly after loosening.

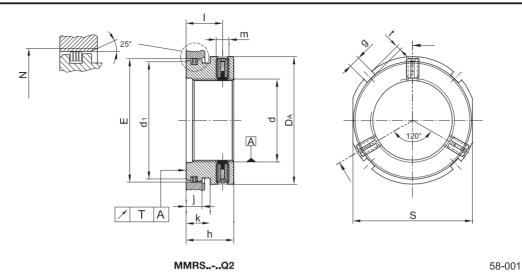
Designations for IBC Precision Locknuts

MMR narrow precision locknut with radial lock MMRB wide precision locknut with radial lock

MMA precision locknut with axial lock via 2 cones meeting at an angle of 90°

MBA precision locknut with axial lock via slotted segments, from Ø 20 on

MMRBS the same as MMRB, but with laminar labyrinth


MBAS the same as MBA, but with laminar labyrinth seal MMRS special locknut with radial lock, to match 60° Super Precision Angular Contact Thrust Ball

Bearings BS and MD locknut
....Q 4 securing elements, unless standard

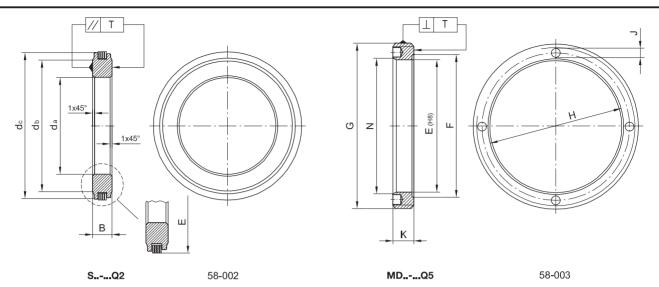
5.1 Labyrinth Locknuts MMRS

Thread	Designation					Di	mensio	ns						Tightening torque set screws	Per- missible axial load
		E	D _A	h	g	t	d ₁	I	m	j	k	N	S	Ms	Fa
							m	m						Nm	kN
M 17 x 1	MMRS 17-36.Q2	36	38	20	5	2	32	15.5	M 5	9	11	37.5	36	4	100
M 20 x 1	MMRS 20-36.Q2														110
M 22 x 1	MMRS 22-36.Q2														110
M 25 x 1.5	MMRS 25-50.Q2	50	58	25	6	2.5	46	19	M 6	10	13	52	55	7	150
M 27 x 1.5	MMRS 27-50.Q2														
M 30 x 1.5	MMRS 30-50.Q2														180
M 30 x 1.5	MMRS 30-60.Q2	60	70	28			56	21	M 8			63	65	18	180
M 35 x 1.5	MMRS 35-60.Q2														190
M 40 x 1.5	MMRS 40-60.Q2														210
M 45 x 1.5	MMRS 45-60.Q2														260
M 35 x 1.5	MMRS 35-76.Q2	76	80	30	7	3	72	23			15	79.5	75		290
M 40 x 1.5	MMRS 40-76.Q2														340
M 45 x 1.5	MMRS 45-76.Q2														400
M 50 x 1.5	MMRS 50-76.Q2														420
M 55 x 2	MMRS 55-76.Q2														450
M 55 x 2	MMRS 55-99.Q2	99	105		8	3.5	95					103	95		450
M 60 x 2	MMRS 60-99.Q2														480
M 65 x 2	MMRS 65-99.Q2														480
M 75 x 2	MMRS 75-99.Q2														510
M 100 x 2	MMRS 100-132.Q2	132	140	35	12	5	128	27	M 10	12	19	137.3	135	34	710
M 125 x 2	MMRS 125-162.Q2	162	175				158					165	165		800

Axial runout according to IT3, DIN 7151

The Labyrinth Locknut with the mounted laminar springsteel rings and the matching housing or a seal nut is forming a non-contact seal (see p. 29).

Whereas the Labyrinth Locknut turns with the shaft, the spring-steel rings are standing still, being preloaded radially to the outside by the housing. The free space has to be filled with the same grease as used for the bearings. The sealing area of the Labyrinth Locknut is already lubri-


cated with BearLub GH62 grease, which has proven its quality in the lubrication of Ball Screw Support Bearings. Two additional engineer's wrenches flats located opposite each other facilitate the assembly. This locknut is used in particular with 60° Super Precision Angular Contact Thrust Ball Bearings (and in bearing units).

5.2 Labyrinth Seals S

Seal Nuts MD

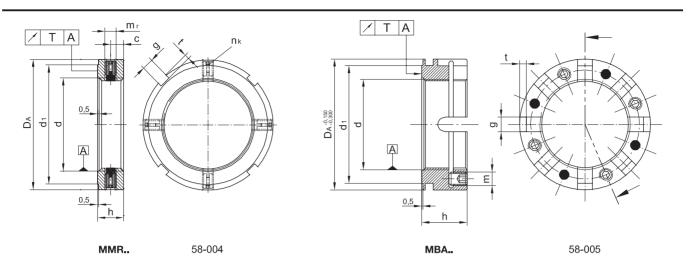
Designation		Dimen	sions		Designation			D	imensior	าร			Per- missible axial load
	d _a	d _b	d _c	В		Е	F	G	Н	J	K	N	Fa
		m	ım						mm				kN
S 12-26.Q2	12	21	25.6	7	MD 40-26.Q5	26	28	M 40 x 1.5	31	4.3	9	27	45
S 15-26.Q2	15												
S 17-36.Q2	17	26	35.6		MD 50-36.Q5	36	41	M 50 x 1.5	42.5		10	37.5	65
S 20-36.Q2	20												
S 25-40.Q2	25	32	39.7		MD 55-40.Q5	40	45	M 55 x 1.5	47			42	77
S 25-50.Q2		41	49.6	10	MD 70-50.Q5	50	56	M 70 x 1.5	59.5		12	52	100
S 30-50.Q2	30												
S 30-60.Q2		46	59.6		MD 80-60.Q5	60	65	M 80 x 1.5	72			63	130
S 35-60.Q2	35												
S 35-76.Q2		66	75.6	12	MD 110-76.Q5	76	92	M 110 x 2	90	6.3	14	79.5	190
S 40-60.Q2	40	50	59.6	10	MD 80-60.Q5	60	65	M 80 x 1.5	72	4.3	12	63	130
S 40-76-10.Q2		66	75.6		MD 95-76.Q5	76	82	M 95 x 2	84.5	6.3		79.5	150
S 40-76-12.Q2				12	MD 110-76.Q5		92	M 110 x 2	90		14		190
S 45-60.Q2	45	55	59.6	10	MD 80-60.Q5	60	65	M 80 x 1.5	72	4.3	12	63	130
S 45-66.Q2			65.6		MD 85-66.Q5	66	72	M 85 x 1.5	76			69	130
S 45-76.Q2		66	75.6	12	MD 110-76.Q5	76	92	M 110 x 2	90	6.3	14	79.5	190
S 50-76-10.Q2	50	68		10	MD 95-76.Q5		82	M 95 x 2	84.5		12		150
S 50-76-12.Q2				12	MD 110-76.Q5		92	M 110 x 2	90		14		190
S 55-76.Q2	55			10	MD 95-76.Q5		82	M 95 x 2	84.5		12		150
S 55-99.Q2		86	98.6	12	MD 130-99.Q5	99	110	M 130 x 2	110		14	103	220
S 60-99.Q2	60												
S 75-99.Q2	75			10	MD 120-99.Q5		101	M 120 x 2					210
S 100-132.Q2	100	114	131.6	14	MD 160-132.Q5	132	134	M 160 x 3	148		18	137.3	340
S 110-132.Q2	110	120	131.7										
S 127-162.Q2	127	144	161.6	14.5	MD 190-162.Q5	162	167	M 190 x 3	176			166	440

The non-contact series S sealing elements consist of a ground parallel steel ring with a radial outside groove. A set of laminar spring-steel rings is assembled into the groove, surrounded by a grease pack (GH62).

These are pressed into the bore of the matching series MD seal nut or into a housing bore via a chamfer and are thus fixed.

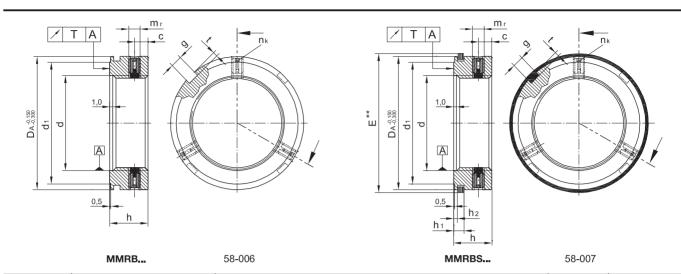
The spacer (support ring) of the labyrinth seal located on the shaft thus turns without touching the opposite lamella. A grease pack in the groove prevents the axial contact of

the lamella with the walls. The Labyrinth Seals have proven to be of advantage adjoining bearings preloaded via these seals (Angular Contact Ball Bearings and 60° Super Precision Angular Contact Ball Bearings).


The Seal Nuts MD with outside thread can also be used separately to clamp outer bearing rings or other machine parts. They need to be secured by glue. An external radial lock is also possible.

Further sizes are available on inquiry.

5.3 Precision Locknuts MMR, MMRB, MMRBS, MBA, MBAS


Thread	Designation						Dir	mensio	ons					tighte tore	_	Permi ax loa MMR MMRB	ial ad MMA
Tolerance 4H	Radial locking system	Axial locking system	D _A	h	g	t	d ₁	С	m _a	m _r	h ₁	h ₂	E*	rad.	ax.	F	
									mm					N		kl	N
M 6 x 0.5	MMR 6		16	8	3	2	12	4	-	M 4		_	_	2	_	16	
M 8 x 0.75	MMR 8															17	
M 10 x 0.75	MMR 10		18				14									22	
M 12 x 1	MMR 12		22				18									26	
M 15 x 1	MMR 15		25				21									33	
M 17 x 1	MMR 17		28	10	4		23	5		M 5				4		49	
		MMA 17 **		16					M 4						2	70	70
M 20 x 1	MMR 20		32	10			27									55	
M 00 4 F	MMRB 20	MBA 20		16							4.4	2.9	32			110	110
M 20 x 1.5	MMR 20 x 1.5 MMRB 20 x 1.5	MDA 20 v 1 5		10 16									32			70	110
M 25 x 1.5	MMR 25	WIDA 20 X 1.5	38	12	5		33	6		M 6			32	7		110 87	110
W 23 X 1.3	MMRB 25	MBA 25	30	18	3		33	0		IVI O			38	'		130	130
M 30 x 1.5	MMR 30	IVIDA 23	45	12			40				5.2	3.2	30			110	130
W 50 X 1.5	MMRB 30	MBA 30	70	18			70		M 6		5.2	0.2	45		7	150	150
M 35 x 1.5	MMR 35	INDA 00	52	12			47		IVI						,	120	100
00 X 110	MMRB 35	MBA 35		18									52			170	120
M 40 x 1.5	MMR 40		58	14	6	2.5	52	7								150	
	MMRB 40	MBA 40		20									58			210	150
M 45 x 1.5	MMR 45		65	14			59				6	3.6				170	
	MMRB 45	MBA 45		20									65			240	170
M 50 x 1.5	MMR 50		70	14			64									180	
	MMRB 50	MBA 50		20									70			260	180
M 55 x 2	MMR 55		75	16	7	3	68	8		M 8				18	18	250	
	MMRB 55	MBA 55		22					M 8				75			340	250
M 60 x 2	MMR 60	MAD A CO	80	16			73									270	070
M 65 x 2	MMRB 60	MBA 60	85	22 16			78						80			360	270
IVI OO X Z	MMR 65 MMRB 65	MBA 65	00	22			70						85			290 400	290
M 70 x 2	MMR 70	IVIDA 03	92	18	8	3.5	85	9					- 65			350	290
IVI /U X Z	MMRB 70	MBA 70	32	24	0	3.5	00	9					92			470	350
M 75 x 2	MMR 75	WDA 70	98	18			90						J2_			370	330
III 70 X Z	MMRB 75	MBA 75	00	24			00						98			500	370
M 80 x 2	MMR 80		105	18			95				7.3	4.3				390	0.0
	MMRB 80	MBA 80		24									105			520	390
M 85 x 2	MMR 85		110	18			102			M 10				34	34	400	
	MMRB 85	MBA 85		24					M 10				110			540	400

E* see page 31 MMRBS ** Securing: 2 cones at 90°, different threads and pitch on request: MMR 16 x 1,5 Q; MMR 33 x 1,5 Q; MMR 42 x 1,5 Q; MMR 60 x 1,5; MMR 65 x 1,5 Q; MMR 145 x 2 Q.

Precision Locknuts MMR, MMRB, MMRBS, MBA, MBAS

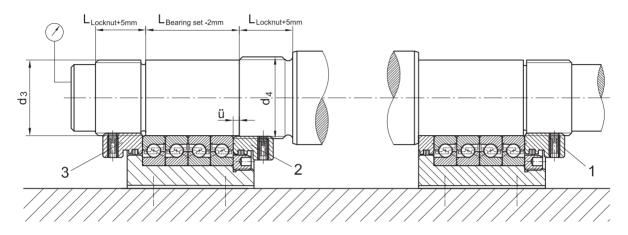
Thread	Designation Radial locking	Axial locking	D _A	h	α.	t	Dir	mensio		n	h	h ₂	E*	Max. tightening torque set screws	ax lo: MMR	issible cial ad MMA MBAS
4H	system	system	DA	- 11	g	·	u ₁	C	m _r	n _K	h ₁	112	_	IVIS	1	ā
								m	m					Nm	k	N
M 90 x 2	MMR 90		120	20	10	4	108	9	M 10	4	7.3	4.3		34	470	
	MMRB 90	MBA 90		26									120		610	470
M 95 x 2	MMR 95		125	20			113								490	
	MMRB 95	MBA 95		26									125		640	490
M 100 x 2	MMR 100		130	20			120								510	
	MMRB 100	MBA 100		26									130		660	510
M 105 x 2	MMR 105		140	22	12	5	126								560	
	MMRB 105	MBA 105		28									140		700	560
M 110 x 2	MMR 110		145	22			133								600	
	MMRB 110	MBA 110		28									145		770	600
M 115 x 2	MMR 115		150	22			137				7.5	4.4			660	
	MMRB 115	MBA 115		28									150		820	660
M 120 x 2	MMR 120		155	24			138								710	
	MMRB 120	MBA 120		30									155		890	710
M 125 x 2	MMR 125		160	24			148								740	
	MMRB 125	MBA 125		30									160		920	740
M 130 x 2	MMR 130	MD 4 400	165	24			149						405		760	700
11.440	MMRB 130	MBA 130	100	30	4.4		100	40	1110				165	00	950	760
M 140 x 2	MMR 140	MDA 440	180	26	14	6	160	10	M 12				100	60	880	000
M 150 × 0	MMRB 140	MBA 140	105	32			171						180		1080	880
M 150 x 2	MMR 150 MMRB 150	MBA 150	195	26 32			171						195		930	930
M 160 x 3	MMRB 160	MBA 160	205	34	16	7	182				8.3	5.3	205		1360	1020
M 170 x 3	MMRB 170	MBA 170	220	34	10	/	198				0.3	5.5	220		1430	1020
M 180 x 3	MMRB 180	MBA 170	230	36	18	8	203						230		1600	1200
M 190 x 3	MMRB 190	MBA 190	240	30	10	O	214						240		1670	1250
M 200 x 3	MMRB 200	MBA 200	250	38			226						250		1850	1390
M 210 x 4	MMRB 210	WIDA 200	270	40	20	10	238	14	M 14		10	6.4	270	85	2000	1000
M 220 x 4	MMRB 220		280		20	10	250		/VI 1-7		10	0.4	280	00	2250	
M 240 x 4	MMRB 240		300	44			270						300		2300	
M 260 x 4	MMRB 260		310				290						310		2500	
M 280 x 4	MMRB 280		330	50	24		310				11	6.6	330		2850	
M 300 x 5	MMRB 300		360				336						360		3100	

Face runout T acc. to IT3, DIN 7151; *above Ø 200 : 6H

 $N_{\mbox{\scriptsize K}}\!\!:$ no. of socket set screws (locking system)

MBAS, MMRBS = MBA, MMRB + Laminar spring steel rings (labyrinth seal)

 E^* = Bore diameter of counterpart = $D_{AO}^{+0.1}$... and a 25° chamfer for the sealing (see also MMRS), where the feeding diameter is 4 % larger than D_a .


5.4 Pretension of spindles with Precision Locknuts

5.4.1 Application with two Fixed End Bearings and Stretched Spindle

Two locknuts with integrated labyrinth seal are used at one end. The interior nut should have a 2–5 mm larger thread diameter, e.g. MMRS 30-60.Q2 + MMRS 35-60.Q2 with a bearing support series BSPB-M 30Q50 or BSBU-M30QB98.

Left-hand side of bearing (stretching side)

Right-hand side of bearing

58-601

 $d_4 > d_3$ by one thread size (see MMRS on page 28)

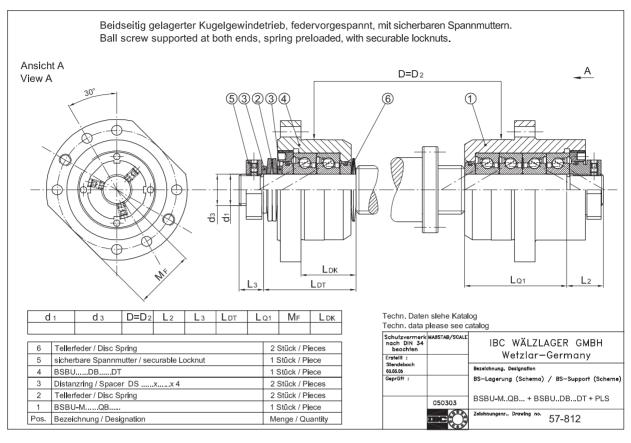
(MMRS 25-36.Q2, MMRS 35-50.Q2 and other intermediate sizes are manufactured upon demand. As an alternative, the series MMRB locknuts can be used next to the labyrinth seal).

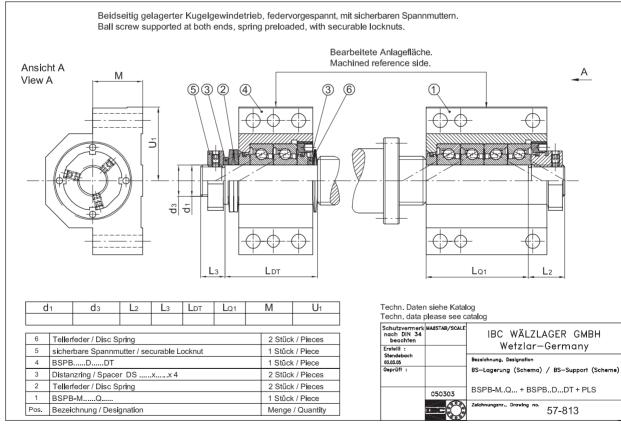
Spindle Stretching Procedure

- The right-hand unit is screwed and pinned, locknut 1 is preloaded with tightening torque M_D acc. to page 27.
- 2) Tighten the base of the left-hand unit lightly.
- 3) Tighten locknuts 2 and 3 lightly first and then tighten them against each other and tighten locknut 3 with M_D.
- 4) Tighten screws in the base of the left-hand unit fully (ream and pin pre-drilled holes and pin).
- 5) Determine zero-value position at axial spindle reference surface via dial indicator. Then loosen locknut 2 a bit and carefully tighten locknut 3 until the dial of the indicator displays the setpoint stretching value. (For locknuts up to Ø 50, the pitch is 1.5 mm for 360° which corresponds e. g. to a stretch of 4.2 μm at an angle of rotation of 1°, from threat Ø 55 x 2 on, 5.6 μm correspond to 1° angle of rotation.)
- Tighten locknut 2 with tightening torque M_D against the bearing package and lock.

5.4.2 Stretching and preloading spring-preloaded spindles and bearing units

If larger expansion of the spindles due to heat is expected, the spindles and bearings are preloaded using separate MMRB locknuts. On the following page, two drawings for inquiry show the basic structure of these cartridge or pillow block units. Of course, a combination of these designs is possible.


The preload and thus the required stiffness are set via the spring path of the disc springs. When the drawing for inquiry is processed, details are discussed with the customer. For this purpose, the drawings may be copied and the required bearing units entered in accordance with the present catalogue.


At the floating end, the shaft d_1 has to be executed with a g4 or g5 seat.

6. Inquiry drawings for fixed bearings + spring preloaded construction groups

33

7. Alphanumerical Product Table

Designation	Product	Page
AC ACC	ATCoated bearings ATCoated bearings with ceramic balls	7, 34 7
BLBU BLPB BNBU BNPB BS BS2RSZ BSBU BSBU-M BSPB BSPB-M	Precision Cartridge Bearing Units for floating ends Precision Pillow Block Bearing Units for floating ends Precision Cartridge Bearing Units for ball screw nuts Precision Cartridge Bearing Units for ball screw nuts Precision Ball Screw Bearings Precision Ball Screw Bearings with seals Precision Cartridge Bearing Units for ball screws Precision Cartridge Bearing Units with integrated locknut Precision Pillow Block Bearing Units with integrated locknut Precision Pillow Block Bearing Units with integrated locknut	23 23 20 21 8 7, 8 16 17 18
СВ	Hybrid Bearings with ceramic balls	6
MBA MBAS MD MMA MMR MMRB MMRBS MMRS	Precision Locknut axially securable Precision Locknut, axially securable, labyrinth-sealed Precision Locknut with outer thread Precision Locknut axially securable Precision Locknut, radially securable Precision Locknut, broad, radially securable Precision Locknut, broad, radially lysecurable, labyrinth-sealed Precision Labyrinth Locknut, radially securable, labyrinth-sealed	30 30 29 30 30 30 30 30
S	Precision Labyrinth Seals	29

8. Glossary

8.1 Material

Bearing Rings and Balls

laterial		Materia no.	al- (US	A)	(JAPA	N)	Hardness [HRC]
earing 00Cr6	Steel	1.3505	SAE	52100	SUJ2		62±2
Chemical Composition in percentage of weight-%							
		Mn	Р '	S	Cr	Ni	Cu
		0.25-	0.03	0.025	1.35-	0.3	0.3
.05 (0.35	0.45			1.65		
Ceramic Balls (pressed isostaticly) Hardness							
Si₃N₄	4						1600 [HV]
Thin chromium coated bearing parts							
Armo	oloy AT	Coating	J	9	9 75	HRC]/1200 [HV]
	9- 05 Cera Si ₃ N	hemical Com Si 9- 0.15- 05 0.35 Ceramic Ba Si ₃ N ₄	earing Steel 200Cr6 1.3505 hemical Composition Si Mn 9- 0.15- 0.25- 05 0.35 0.45 Ceramic Balls (pres	earing Steel 00Cr6 1.3505 SAE hemical Composition in perc Si Mn P 9- 0.15- 0.25- 0.03 05 0.35 0.45 Ceramic Balls (pressed isc Si ₃ N ₄	earing Steel 20Cr6 1.3505 SAE 52100 hemical Composition in percentage Si Mn P S 9- 0.15- 0.25- 0.03 0.025 05 0.35 0.45 Ceramic Balls (pressed isostaticly) Si ₃ N ₄ Thin chromium coated bearing par	earing Steel 200Cr6 1.3505 SAE 52100 SUJ2 hemical Composition in percentage of weig Si Mn P S Cr 9- 0.15- 0.25- 0.03 0.025 1.35- 05 0.35 0.45 1.65 Ceramic Balls (pressed isostaticly) Si ₃ N ₄ Thin chromium coated bearing parts	earing Steel 20Cr6 1.3505 SAE 52100 SUJ2 hemical Composition in percentage of weight-% Si Mn P S Cr Ni 9- 0.15- 0.25- 0.03 0.025 1.35- 0.3 05 0.35 0.45 1.65 Ceramic Balls (pressed isostaticly) Si ₃ N ₄ Thin chromium coated bearing parts

Additional Suffixed of ATCoated Bearings

A11 Inner and outer ring ATCoated
A15 Inner and outer ring ATCoated

Rolling elements and cage as far as possible corrosion

protected

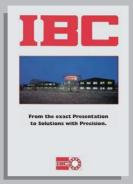
A21, A26 Inner ring ATCoated

Function of the ATCoating

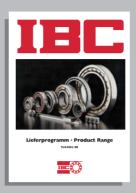
1) Reduction of friction, lower heat generation

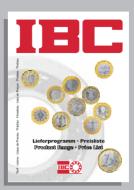
Friction Partners	static friction coefficient (dry) [µo]	sliding friction coefficient (dry) [µ]
Stahl/Stahl	0.3	0.2
Stahl/ATC	0.17	0.16
ATC/ATC	0.14	0.12

- Lubricant film bonds better.
- Separation of parts of same material; avoiding of cold welding by adhesion, avoiding of fretting corrosion. Securing of sliding property of bearing ring against shaft or housing (important for floating bearings).
- Outer corrosion protection, chemical resistance against aggressive materials, tribocorrosion.
- Wear protection by higher hardness of the rim zone 1200HV, 0.003 (75 HRC).


8.2 Grease

Lubricant BearLub	Temperature range	Viscosity 40 °/100 °C
GH62:	– 30 °/160 °C	150/18 mm ² /s
GN21:	– 35 °/140 °C	85/12.5 mm ² /s


02/05


More of IBC ...

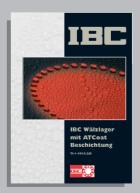
Company Profile

Product Range TI-0-000 I / D (German) TI-0-000 I / E (English)

Product Range Pricelist

Angular Contact Bearings 40° TI-I-4044.0 / D (German)

Linear Bearings TI-I-7001.2 / D (German)


Telescopic Rails TI-I-7005.I / D (German)

High Precision Bearings TI-I-5001.1 / D (German)

Super Precision Bearings Service Catalog TI-I-5003.1 / D (German) TI-I-5003.1 / E (English)

ATCoated bearings TI-I-5010.2 / D (German)

IBC WÄLZLAGER GMBH

INDUSTRIAL BEARINGS AND COMPONENTS

Post box 1825 · 35528 WETZLAR (GERMANY)

Tel: +49/64 41/95 53-02 Fax: +49/64 41/5 30 15

Corporate office Industriegebiet Oberbiel D-35606 Solms-Oberbiel

e-mail: ibc@ibc-waelzlager.com

http://www.ibc-waelzlager.com

IBC INDUSTRIAL BEARINGS AND COMPONENTS AG

Tel: +41/32/6 52 83 53 Fax: +41/32/6 52 83 58

Corporate office Kapellstrasse 26 CH-2540 Grenchen

e-mail: ibc@ibcag.ch http://www.ibc-waelzlager.com